《【創(chuàng)新方案】高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第1講 空間幾何體的結(jié)構(gòu)三視圖和直觀圖 理 新人教版》由會員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第1講 空間幾何體的結(jié)構(gòu)三視圖和直觀圖 理 新人教版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、【精品文檔】如有侵權(quán),請聯(lián)系網(wǎng)站刪除,僅供學(xué)習(xí)與交流
【創(chuàng)新方案】2013年高考數(shù)學(xué)一輪復(fù)習(xí) 第八篇 立體幾何 第1講 空間幾何體的結(jié)構(gòu)三視圖和直觀圖 理 新人教版
.....精品文檔......
第1講 空間幾何體的結(jié)構(gòu)、三視圖和直觀圖
【2013年高考會這樣考】
1.幾何體的展開圖、幾何體的三視圖仍是高考的熱點.
2.三視圖和其他的知識點結(jié)合在一起命題是新教材中考查學(xué)生三視圖及幾何量計算的趨勢.
【復(fù)習(xí)指導(dǎo)】
1.備考中,要重點掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型.
2.要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等
2、幾何體的三視圖.
基礎(chǔ)梳理
1.多面體的結(jié)構(gòu)特征
(1)棱柱的側(cè)棱都互相平行,上下底面是全等的多邊形.
(2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形.
(3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形.
2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
(1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.
(3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到.
(4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到.
3.空間幾何體的三
3、視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖.
4.空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
(1)畫幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话耄?
(2)畫幾何體的高
4、在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變.
一個規(guī)律
三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法.
兩個概念
(1)正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形.
(2)正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱
5、錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心.
雙基自測
1.(人教A版教材習(xí)題改編)下列說法正確的是( ).
A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱
B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱
C.有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐
D.棱臺各側(cè)棱的延長線交于一點
答案 D
2.(2012·杭州模擬)用任意一個平面截一個幾何體,各個截面都是圓面,則這個幾何體一定是( ).
A.圓柱 B.圓錐
C.球體 D.圓柱、圓錐、球體的組合體
解析 當(dāng)用
6、過高線的平面截圓柱和圓錐時,截面分別為矩形和三角形,只有球滿足任意截面都是圓面.
答案 C
3.(2011·陜西)某幾何體的三視圖如圖所示,則它的體積是( ).
A.8- B.8-
C.8-2π D.
解析 圓錐的底面半徑為1,高為2,該幾何體體積為正方體體積減去圓錐體積,即V=22×2-×π×12×2=8-π,正確選項為A.
答案 A
4.(2011·浙江)若某幾何體的三視圖如圖所示,則這個幾何體的直觀圖可以是
解析 所給選項中,A、C選項的正視圖、俯視圖不符合,D選項的側(cè)視圖不符合,只有選項B符合.
答案 B
5.(2011·天津)一個幾何體的三視圖如圖所示(
7、單位:m)則該幾何體的體積為________m3.
解析 由三視圖可知該幾何體是組合體,下面是長方體,長、寬、高分別為3、2、1,上面是一個圓錐,底面圓半徑為1,高為3,所以該幾何體的體積為3×2×1+π×3=6+π(m3).
答案 6+π
考向一 空間幾何體的結(jié)構(gòu)特征
【例1】?(2012·天津質(zhì)檢)如果四棱錐的四條側(cè)棱都相等,就稱它為“等腰四棱錐”,四條側(cè)棱稱為它的腰,以下4個命題中,假命題是( ).
A.等腰四棱錐的腰與底面所成的角都相等
B.等腰四棱錐的側(cè)面與底面所成的二面角都相等或互補
C.等腰四棱錐的底面四邊形必存在外接圓
D.等腰四棱錐的各頂點必在同一球面上
8、[審題視點] 可借助幾何圖形進行判斷.
解析 如圖
,等腰四棱錐的側(cè)棱均相等,其側(cè)棱在底面的射影也相等,則其腰與底面所成角相等,即A正確;底面四邊形必有一個外接圓,即C正確;在高線上可以找到一個點O,使得該點到四棱錐各個頂點的距離相等,這個點即為外接球的球心,即D正確;但四棱錐的側(cè)面與底面所成角不一定相等或互補(若為正四棱錐則成立).故僅命題B為假命題.選B.
答案 B
三棱柱、四棱柱、正方體、長方體、三棱錐、四棱錐是常見的空間幾何體,也是重要的幾何模型,有些問題可用上述幾何體舉特例解決.
【訓(xùn)練1】 以下命題:
①以直角三角形的一邊為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐;
②以直角梯
9、形的一腰為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓臺;
③圓柱、圓錐、圓臺的底面都是圓;
④一個平面截圓錐,得到一個圓錐和一個圓臺.
其中正確命題的個數(shù)為( ).
A.0 B.1 C.2 D.3
解析 命題①錯,因為這條邊若是直角三角形的斜邊,則得不到圓錐.命題②錯,因這條腰必須是垂直于兩底的腰.命題③對.命題④錯,必須用平行于圓錐底面的平面截圓錐才行.
答案 B
考向二 空間幾何體的三視圖
【例2】?(2011·全國新課標(biāo))在一個幾何體的三視圖中,正視圖和俯視圖如圖所示,則相應(yīng)的側(cè)視圖可以為( ).
[審題視點] 由正視圖和俯視圖想到三棱錐和圓錐.
解
10、析 由幾何體的正視圖和俯視圖可知,該幾何體應(yīng)為一個半圓錐和一個有一側(cè)面(與半圓錐的軸截面為同一三角形)垂直于底面的三棱錐的組合體,故其側(cè)視圖應(yīng)為D.
答案 D
(1)空間幾何體的三視圖是該幾何體在三個兩兩垂直的平面上的正投影,并不是從三個方向看到的該幾何體的側(cè)面表示的圖形.
(2)在畫三視圖時,重疊的線只畫一條,能看見的輪廓線和棱用實線表示,擋住的線要畫成虛線.
【訓(xùn)練2】 (2011·浙江)若某幾何體的三視圖如圖所示,則這個幾何體的直觀圖可以是( ).
解析 A中正視圖,俯視圖不對,故A錯.B中正視圖,側(cè)視圖不對,故B錯.C中側(cè)視圖,俯視圖不對,故C錯,故選D.
答案 D
11、考向三 空間幾何體的直觀圖
【例3】?已知正三角形ABC的邊長為a,那么△ABC的平面直觀圖△A′B′C′的面積為( ).
A.a2 B.a2 C.a2 D.a2
[審題視點] 畫出正三角形△ABC的平面直觀圖△A′B′C′,求△A′B′C′的高即可.
解析 如圖①②所示的實際圖形和直觀圖.
由斜二測畫法可知,A′B′=AB=a,O′C′=OC=a,
在圖②中作C′D′⊥A′B′于D′,
則C′D′=O′C′=a.
∴S△A′B′C′=A′B′·C′D′=×a×a=a2.
答案 D
直接根據(jù)水平放置的平面圖形的直觀圖的斜二測畫法規(guī)則即可得到
12、平面圖形的面積是其直觀圖面積的2倍,這是一個較常用的重要結(jié)論.
【訓(xùn)練3】 如圖,
矩形O′A′B′C′是水平放置的一個平面圖形的直觀圖,其中O′A′=6 cm,O′C′=2 cm,則原圖形是( ).
A.正方形 B.矩形
C.菱形 D.一般的平行四邊形
解析
將直觀圖還原得?OABC,則
∵O′D′=O′C′=2 (cm),
OD=2O′D′=4 (cm),
C′D′=O′C′=2 (cm),∴CD=2 (cm),
OC===6 (cm),
OA=O′A′=6 (cm)=OC,
故原圖形為菱形.
答案 C
閱卷報告9——忽視幾何體的放置對三視圖的影響致
13、錯
【問題診斷】 空間幾何體的三視圖是該幾何體在兩兩垂直的三個平面上的正投影.同一幾何體擺放的角度不同,其三視圖可能不同,有的考生往往忽視這一點.
【防范措施】 應(yīng)從多角度細(xì)心觀察.
【示例】?一個幾何體的正視圖為一個三角形,則這個幾何體可能是下列幾何體中的________(填入所有可能的幾何體前的編號).
①三棱錐;②四棱錐;③三棱柱;④四棱柱;⑤圓錐;⑥圓柱.
錯因 忽視幾何體的不同放置對三視圖的影響,漏選③.實錄?、佗冖?
正解?、偃忮F的正視圖是三角形;②當(dāng)四棱錐的底面是四邊形放置時,其正視圖是三角形;③把三棱柱某一側(cè)面當(dāng)作底面放置,其底面正對著我們的視線時,它的正視圖是三角形;④對于四棱柱,不論怎樣放置,其正視圖都不可能是三角形;
⑤當(dāng)圓錐的底面水平放置時,其正視圖是三角形;⑥圓柱不論怎樣放置,其正視圖也不可能是三角形.
答案?、佗冖邰?
【試一試】 (2011·山東)右圖是
長和寬分別相等的兩個矩形.給定下列三個命題:①存在三棱柱,其正(主)視圖、俯視圖如右圖;②存在四棱柱,其正(主)視圖、俯視圖如右圖;③存在圓柱,其正(主)視圖,俯視圖如右圖.其中真命題的個數(shù)是( ).
A. 3 B.2
C.1 D.0
[嘗試解答] 如圖①②③的正(主)視圖和俯視圖都與原題相同,故選A.
答案 A