各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析)

上傳人:xt****7 文檔編號:105567759 上傳時間:2022-06-12 格式:DOC 頁數(shù):14 大?。?.21MB
收藏 版權(quán)申訴 舉報 下載
各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析)_第1頁
第1頁 / 共14頁
各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析)_第2頁
第2頁 / 共14頁
各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析)_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析)》由會員分享,可在線閱讀,更多相關(guān)《各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析)(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、各地中考數(shù)學(xué)試卷分類匯編 操作探究(含解析) 一.選擇題 1.(xx?臨安?3 分.)z 如圖,正方形硬紙片 ABCD 的邊長是 4,點 E.F 分別是 AB.BC 的中 點,若沿左圖中的虛線剪開,拼成如圖的一座“小別墅”,則圖中陰影部分的面積是( ) A.2 B.4 C.8 D.10 【分析】本題考查空間想象能力. 【解答】解:陰影部分由一個等腰直角三角形和一個直角梯形組成, 由第一個圖形可知:陰影部分的兩部分可構(gòu)成正方形的四分之一, 正方形的面積=4×4=16, ∴圖中陰影部分的面積是 16÷4=4. 故選:B. 【點評】解決本題的關(guān)鍵是得到陰影部分的組成與原正方形面

2、積之間的關(guān)系%@z#step~.co& 2. (xx?嘉興?3 分)將一張正方形紙片按如圖步驟①,②沿虛線對折兩次,然后沿③中平 行于底邊的虛線剪去一個角,展開鋪平后的圖形是( ) A. (A) B. (B) C. (C) D. (D) 【答案】A 【解析】【分析】根據(jù)兩次折疊都是沿著正方形的對角線折疊, 展開后所得圖形的頂點一定 在正方形的對角線上, 根據(jù)③的剪法,中間應(yīng)該是一個正方形. 【解答】根據(jù)題意,兩次折疊都是沿著正方形的對角線折疊的,根據(jù)③的剪法,展開后所得 圖形的頂點一定在正方形的對角線上,而且中間應(yīng)該是一個正方形. 故選 A. 【點評】關(guān)鍵是要

3、理解折疊的過程,得到關(guān)鍵信息,如本題得到展開后的圖形的頂點在正方 形的對角線上是解題的關(guān)鍵. 3. (xx?廣西南寧?3 分)如圖,矩形紙片 ABCD,AB=4,BC=3,點 P 在 BC 邊上,將△CDP 沿 DP 折疊,點 C 落在點 E 處,PE.DE 分別交 AB 于點 O、F,且 OP=OF,則 cos∠ADF 的值為 ( ) A. B. C. D. 【分析】根據(jù)折疊的性質(zhì)可得出 DC=DE.CP=EP,由∠EOF=∠BOP、∠B=∠E.OP=OF 可得出 △OEF≌△OBP(AAS),根據(jù)全等三角形的性質(zhì)可得出 OE=OB.EF=BP,設(shè) E

4、F=x,則 BP=x、DF=4 ﹣x、BF=PC=3﹣x,進(jìn)而可得出 AF=1+x,在 Rt△DAF 中,利用勾股定理可求出 x 的值,再利 用余弦的定義即可求出 cos∠ADF 的值. 【解答】解:根據(jù)折疊,可知:△DCP≌△DEP, ∴DC=DE=4,CP=EP. 在△OEF 和△OBP 中,, ∴△OEF≌△OBP(AAS), ∴OE=OB,EF=BP. 設(shè) EF=x,則 BP=x,DF=DE﹣EF=4﹣x, 又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x, ∴AF=AB﹣BF=1+x. 在 Rt△DAF 中,AF2+AD2=DF2,即

5、(1+x)2+32=(4﹣x)2, 解得:x=, ∴DF=4﹣x=, ∴cos∠ADF==. 故選:C. 【點評】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及解直角三角形,利用勾股定理 結(jié)合 AF=1+x,求出 AF 的長度是解題的關(guān)鍵. 4.(xx?海南?3 分)如圖 1,分別沿長方形紙片 ABCD 和正方形紙片 EFGH 的對角線 AC,EG 剪開,拼成如圖 2 所示的?KLMN,若中間空白部分四邊形 OPQR 恰好是正方形,且?KLMN 的面 積為 50,則正方形 EFGH 的面積為( ) A.24 B.25 C.26 D

6、.27 【分析】如圖,設(shè) PM=PL=NR=AR=a,正方形 ORQP 的邊長為 b,構(gòu)建方程即可解決問題; 【解答】解:如圖,設(shè) PM=PL=NR=AR=a,正方形 ORQP 的邊長為 b. 由題意:a2+b2+(a+b)(a﹣b)=50, ∴a2=25, ∴正方形 EFGH 的面積=a2=25, 故選:B. 【點評】本題考查圖形的拼剪,矩形的性質(zhì),正方形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用 參數(shù)構(gòu)建方程解決問題,學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考選擇題中的壓軸題. 二.填空題 1. (xx?杭州?4 分)折疊矩形紙片 ABCD 時,發(fā)現(xiàn)可以進(jìn)行如

7、 下操作:①把△ADE 翻折,點 A 落在 DC 邊上的點 F 處,折痕為 DE,點 E 在 AB 邊上;②把紙 片展開并鋪平;③把△CDG 翻折,點 C 落在直線 AE 上的點 H 處,折痕為 DG,點 G 在 BC 邊上, 若 AB=AD+2,EH=1,則 AD= 。 【答案】或 3 【考點】勾股定理,矩形的性質(zhì),正方形的性質(zhì),翻折變換(折疊問題) 【解析】【解答】∵當(dāng)點 H 在線段 AE 上時把△ADE 翻折,點 A 落在 DC 邊上的點 F 處,折痕 為 DE,點 E 在 AB 邊上 ∴四邊形 ADFE 是正方形 ∴AD=AE ∵AH=AE-EH=AD-1

8、 ∵把△CDG 翻折,點 C 落在直線 AE 上的點 H 處,折痕為 DG,點 G 在 BC 邊上 ∴DC=DH=AB=AD+2 在Rt△ADH 中,AD2+AH2=DH2 ∴AD2+(AD-1)2=(AD+2)2 解之:AD=,AD=(舍去) ∴AD= 當(dāng)點 H 在線段 BE 上時 則 AH=AE-EH=AD+1 在Rt△ADH中,AD2+AH2=DH2 ∴AD2+(AD+1)2=(AD+2)2 解之:AD=3,AD=-1(舍去) 故答案為: 或 3 【分析】分兩種情況:當(dāng)點 H 在線段 AE 上;當(dāng)點 H 在線段 BE 上。根據(jù)①的折疊,可得出四

9、 邊形 ADFE 是正方形,根據(jù)正方形的性質(zhì)可得出 AD=AE,從而可得出 AH=AD-1(或 AH=AD+1), 再根據(jù)②的折疊可得出 DH=AD+2,然后根據(jù)勾股定理求出 AD 的長。 2.(xx?臨安?3 分.)馬小虎準(zhǔn)備制作一個封閉的正方體盒子,他先用 5 個大小一樣的正 方形制成如圖所示的拼接圖形(實線部分),經(jīng)折疊后發(fā)現(xiàn)還少一個面,請你在圖中的拼接 圖形上再接一個正方形,使新拼接成的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子(添加 所有符合要求的正方形,添加的正方形用陰影表示) . 【分析】由平面圖形

10、的折疊及正方體的展開圖解題. 【解答】解:, 故答案為:. 【點評】本題通過考查正方體的側(cè)面展開圖,展示了這樣一個教學(xué)導(dǎo)向,教學(xué)中要讓學(xué)生確 實經(jīng)歷活動過程,而不要將活動層次停留于記憶水平.我們有些老師在教學(xué)“展開與折疊” 時,不是去引導(dǎo)學(xué)生動手操作,而是給出幾種結(jié)論,這樣教出的學(xué)生肯定遇到動手操作題型 時就束手無策了. 3. (xx?金華、麗水?4 分)如圖 2,小靚用七巧板拼成一幅裝飾圖,放入長方形 ABCD 內(nèi), 裝飾圖中的三角形頂點 E ,F(xiàn) 分別在邊 AB ,BC 上,三角形①的邊 GD 在邊 AD 上,則 的值是 .

11、 【解析】【解答】解:如圖,過 G 作 GH⊥BC 交 BC 于 H,交三角形②斜邊于點 I, 則 AB=GH=GI+HI,BC=AD=AG+GD=EI+GD。 設(shè)原來七巧板的邊長為 4, 則三角形②斜邊的長度=4,GI= ,三角形③斜邊長 IH= , 則 AB=GI+IH= +2, 而 AG=EI=4,GD=4, 則 BC=8,∴ 故答案為: 。 【分析】可設(shè)原來七巧板的邊長為 4(或一個字母),在圖 2 中,可分別求出 AB 與 BC 的長。 過 G 作 BC 的垂線段,垂足為 H,則 AB=GH,而 GH 恰好是三角形②斜邊上高的長

12、度與三角形 ③斜邊長度的和;同樣的可求出 BC 的,求比值即可。 4. (xx·湖北省恩施·3 分)在 Rt△ABC 中,AB=1,∠A=60°,∠ABC=90°,如圖所示 將 Rt△ABC 沿直線 l 無滑動地滾動至 Rt△DEF,則點 B 所經(jīng)過的路徑與直線 l 所圍成的封閉 圖形的面積為 .(結(jié)果不取近似值) 【分析】先得到∠ACB=30°,BC=,利用旋轉(zhuǎn)的性質(zhì)可得到點 B 路徑分部分:第一部分為 以直角三角形 30°的直角頂點為圓心,為半徑,圓心角為 150°的弧長;第二部分為以 直角三角形 60°的直角頂點為圓心,1 為半徑,圓心角為 120°的弧長,

13、然后根據(jù)扇形的面 積公式計算點 B 所經(jīng)過的路徑與直線 l 所圍成的封閉圖形的面積. 【解答】解:∵Rt△ABC 中,∠A=60°,∠ABC=90°, ∴∠ACB=30°,BC=, 將 Rt△ABC 沿直線 l 無滑動地滾動至 Rt△DEF,點 B 路徑分部分:第一部分為以直角三角形 30°的直角頂點為圓心 為半徑,圓心角為 150°的弧長;第二部分為以直角三角形 60° 的直角頂點為圓心,1 為半徑,圓心角為 120°的弧長; ∴ 點 B 所 經(jīng) 過 的 路 徑 與 直 線 l 所 圍 成 的 封 閉 圖 形 的 面 積 =. 故答案為. 【點

14、評】本題考查了軌跡:利用特殊幾何圖形描述點運動的軌跡,然后利用幾何性質(zhì)計算相 應(yīng)的幾何量. 5.(xx?貴州貴陽?8 分)如圖①,在 Rt△ABC 中,以下是小亮探究與之間關(guān)系 的方法: ∵sinA=,sinB= ∴c=,c= ∴= 根據(jù)你掌握的三角函數(shù)知識.在圖②的銳角△ABC 中,探究、、之間的關(guān) 系,并寫出探究過程. 【分析】三式相等,理由為:過 A 作 AD⊥BC,BE⊥AC,在直角三角形 ABD 中,利用銳角三 角函數(shù)定義表示出 AD,在直角三角形 ADC 中,利用銳角三角函數(shù)定義表示出 AD,兩者相等 即可得證. 【解答】解:==,理由為: 過 A

15、 作 AD⊥BC,BE⊥AC, 在 Rt△ABD 中,sinB=,即 AD=csinB, 在 Rt△ADC 中,sinC=,即 AD=bsinC, ∴csinB=bsinC,即= , 同理可得= 則= =. 【點評】此題考查了解直角三角形,熟練掌握銳角三角函數(shù)定義是解本題的關(guān)鍵. 三.解答題 1.(xx?江蘇無錫?10 分)如圖,平面直角坐標(biāo)系中,已知點 B 的坐標(biāo)為(6,4). (1)請用直尺(不帶刻度)和圓規(guī)作一條直線 AC,它與 x 軸和 y 軸的正半軸分別交于點 A 和點 C,且使∠ABC=90°,△ABC 與△AOC 的面積相等.(作圖不必寫作法

16、,但要保留作圖痕 跡.) (2)問:(1)中這樣的直線 AC 是否唯一?若唯一,請說明理由;若不唯一,請在圖中畫出 所有這樣的直線 AC,并寫出與之對應(yīng)的函數(shù)表達(dá)式. 【分析】(1)①作線段 OB 的垂直平分線 AC,滿足條件,②作矩形 OA′BC′,直線 A′C′, 滿足條件; (2)分兩種情形分別求解即可解決問題; 【解答】(1)解:如圖△ABC 即為所求; (2)解:這樣的直線不唯一. ①作線段 OB 的垂直平分線 AC,滿足條件,此時直線的解析式為 y=﹣x+ ②作矩形 OA′BC′,直線 A′C′,滿足條件,此時直線 A′C′的解析式為 y=

17、﹣x+4. 【點評】本題考查作圖﹣復(fù)雜作圖,待定系數(shù)法等知識,解題的關(guān)鍵是熟練掌握基本知識, 屬于中考??碱}型. 2.(xx?江蘇徐州?7 分)如圖,方格紙中的每個小方格都是邊長為 1 個單位的正方形,在 建立平面直角坐標(biāo)系后,△ABC 的頂點均在格點上,點 B 的坐標(biāo)為(1,0) ①畫出△ABC 關(guān)于 x 軸對稱的△A1B1C1; ②畫出將△ABC 繞原點 O 按逆時針旋轉(zhuǎn) 90°所得的△A2B2C2; ③△A1B1C1 與△A2B2C2 成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸; ④△A1B1C1 與△A2B2C2 成中心對稱圖形嗎?若成中心對稱圖形,寫

18、出所有的對稱中心的坐標(biāo). 【分析】(1)將三角形的各頂點,向 x 軸作垂線并延長相同長度得到三點的對應(yīng)點,順次連 接; (2)將三角形的各頂點,繞原點 O 按逆時針旋轉(zhuǎn) 90°得到三點的對應(yīng)點.順次連接各對應(yīng) 點得△A2B2C2; (3)從圖中可發(fā)現(xiàn)成軸對稱圖形,根據(jù)軸對稱圖形的性質(zhì)畫出對稱軸即連接兩對應(yīng)點的線 段,做它的垂直平分線; (4)成中心對稱圖形,畫出兩條對應(yīng)點的連線,交點就是對稱中心. 【解答】解:如下圖所示: (3)成軸對稱圖形,根據(jù)軸對稱圖形的性質(zhì)畫出對稱軸即連接兩對應(yīng)點的線段,作它的垂 直平分線, 或連接 A1C1,A2C2 的中點

19、的連線為對稱軸. (4)成中心對稱,對稱中心為線段 BB2 的中點 P,坐標(biāo)是(,). 【點評】本題綜合考查了圖形的變換,在圖形的變換中,關(guān)鍵是找到圖形的對應(yīng)點. 3.(xx?山東東營市?10 分)(1)某學(xué)?!爸腔鄯綀@”數(shù)學(xué)社團(tuán)遇到這樣一個題目: 如圖 1,在△ABC 中,點 O 在線段 BC 上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1: 3,求 AB 的長. 經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點 B 作 BD∥AC,交 AO 的延長線于點 D,通過構(gòu)造△ABD 就可以 解決問題(如圖 2). 請回答:∠ADB= 75 °,AB= 4 . (2)請參

20、考以上解決思路,解決問題: 如圖 3,在四邊形 ABCD 中,對角線 AC 與 BD 相交于點 O,AC⊥AD,AO=,∠ABC=∠ACB=75°, BO:OD=1:3,求 DC 的長. 【分析】(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA 可得出 △BOD∽△COA,利用相似三角形的性質(zhì)可求出 OD 的值,進(jìn)而可得出 AD 的值,由三角形內(nèi)角 和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出 AB=AD=4,此題得解; (2)過點 B 作 BE∥AD 交 AC 于點 E,同(1)可得出 AE=4,在 Rt△AEB 中,

21、利用勾股定 理可求出 BE 的長度,再在 Rt△CAD 中,利用勾股定理可求出 DC 的長,此題得解. 【解答】解:(1)∵BD∥AC, ∴∠ADB=∠OAC=75°. ∵∠BOD=∠COA, ∴△BOD∽△COA, ∴==. 又∵AO=, ∴OD=AO=, ∴AD=AO+OD=4. ∵∠BAD=30°,∠ADB=75°, ∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB, ∴AB=AD=4. 故答案為:75;4. (2)過點 B 作 BE∥AD 交 AC 于點 E,如圖所示. ∵AC⊥AD,BE∥AD, ∴∠DAC=∠BEA=

22、90°. ∵∠AOD=∠EOB, ∴△AOD∽△EOB, ∴==. ∵BO:OD=1:3, ∴==. ∵AO=3, ∴EO=, ∴AE=4. ∵∠ABC=∠ACB=75°, ∴∠BAC=30°,AB=AC, ∴AB=2BE. 在 Rt△AEB 中,BE2+AE2=AB2,即(4)2+BE2=(2BE2, 解得:BE=4, ∴AB=AC=8,AD=12. 在 Rt△CAD 中,AC2+AD2=CD2,即 82+122=CD2, 解得:CD=4. 【點評】本題考查了相似三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理以及平行線的 性質(zhì),

23、解題的關(guān)鍵是:(1)利用相似三角形的性質(zhì)求出 OD 的值;(2)利用勾股定理求出 BE.CD 的長度. 4.(xx?山東濟(jì)寧市?7 分)在一次數(shù)學(xué)活動課中,某數(shù)學(xué)小組探究求環(huán)形花壇(如圖所 示) 面積的方法,現(xiàn)有以下工具;①卷尺;②直棒 EF;③T 型尺(CD 所在的直線垂 直 平分線段 AB). (1)在圖 1 中,請你畫出用 T 形尺找大圓圓心的示意圖(保留畫圖痕跡,不寫 畫法); (2)如圖 2,小華說:“我只用一根直棒和一個卷尺就可以求出環(huán)形花壇的面積, 具體做 法如下: 將直棒放置到與小圓相切,用卷尺量出此時直棒與大圓兩交點 M,N 之間的

24、距離, 就可 求出環(huán)形花壇的面積”如果測得 MN=10m,請你求出這個環(huán)形花壇的面積. 【解答】解:(1)如圖點 O 即為所求; (2)設(shè)切點為C,連接OM,OC. ∵M(jìn)N 是切線, ∴OC⊥MN, ∴CM=CN=5,∴OM2﹣OC2=CM2=25, ∴S 圓環(huán)=π ?OM2﹣π ?OC2=25π . 5.一節(jié)數(shù)學(xué)課上,老師提出了這樣一個問題:如圖 1,點 P 是正方形 ABCD 內(nèi)一點,PA=1, PB=2,PC=3.你能求出∠APB 的度數(shù)嗎? 小明通過觀察、分析、思考,形成了如下思路: 思路一:將△BP

25、C 繞點 B 逆時針旋轉(zhuǎn) 90°,得到△BP′A,連接 PP′,求出∠APB 的度數(shù); 思路二:將△APB 繞點 B 順時針旋轉(zhuǎn) 90°,得到△CP'B,連接 PP′,求出∠APB 的度數(shù). 請參考小明的思路,任選一種寫出完整的解答過程. 【類比探究】 如圖 2,若點 P 是正方形 ABCD 外一點,PA=3,PB=1,PC=,求∠APB 的度數(shù). 【分析】(1)思路一、先利用旋轉(zhuǎn)求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理 求出 PP',進(jìn)而判斷出△APP'是直角三角形,得出∠APP'=90°,即可得出結(jié)論; 思路二、同思路一的方法即可得出結(jié)論;

26、 (2)同(1)的思路一的方法即可得出結(jié)論. 【解答】解:(1)思路一、如圖 1, 將△BPC 繞點 B 逆時針旋轉(zhuǎn) 90°,得到△BP′A,連接 PP′, ∴△ABP'≌△CBP, ∴∠PBP'=90°,BP'=BP=2,AP'=CP=3, 在 Rt△PBP'中,BP=BP'=2, ∴∠BPP'=45°,根據(jù)勾股定理得,PP'=BP=2, ∵AP=1, ∴AP2+PP'2=1+8=9, ∵AP'2=32=9, ∴AP2+PP'2=AP'2, ∴△APP'是直角三角形,且∠APP'=90°, ∴∠APB=∠APP'+∠BPP'=90°+45°=135°; 思

27、路二、同思路一的方法; (2)如圖 2, 將△BPC 繞點 B 逆時針旋轉(zhuǎn) 90°,得到△BP′A,連接 PP′, ∴△ABP'≌△CBP, ∴∠PBP'=90°,BP'=BP=1,AP'=CP=, 在 Rt△PBP'中,BP=BP'=1, ∴∠BPP'=45°,根據(jù)勾股定理得,PP'=BP=, ∵AP=3, ∴AP2+PP'2=9+2=11, ∵AP'2=()2=11, ∴AP2+PP'2=AP'2, ∴△APP'是直角三角形,且∠APP'=90°, ∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°. 【點評】此題是四邊形綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),直角三角形的性質(zhì) 和判定,勾股定理,正確作出輔助線是解本題的關(guān)鍵. 6. (xx?金華、麗水?8 分)如圖,在 6×6 的網(wǎng)格中,每個小正方形的邊長為 1,點 A 在 格點(小正方形的頂點)上.試在各網(wǎng)格中畫出頂點在格點上,面積為 6,且符合相應(yīng)條件 的圖形.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!