2022年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第13講 正、余弦定理及應(yīng)用
《2022年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第13講 正、余弦定理及應(yīng)用》由會員分享,可在線閱讀,更多相關(guān)《2022年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第13講 正、余弦定理及應(yīng)用(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第13講 正、余弦定理及應(yīng)用 課題 正、余弦定理及應(yīng)用(共 6 課時(shí)) 修改與創(chuàng)新 教學(xué)目標(biāo) (1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題; (2)能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題。 命題走向 對本講內(nèi)容的考察主要涉及三角形的邊角轉(zhuǎn)化、三角形形狀的判斷、三角形內(nèi)三角函數(shù)的求值以及三角恒等式的證明問題,立體幾何體的空間角以及解析幾何中的有關(guān)角等問題。今后高考的命題會以正弦定理、余弦定理為知識框架,以三角形為主要依托,結(jié)合實(shí)際應(yīng)用問題
2、考察正弦定理、余弦定理及應(yīng)用。題型一般為選擇題、填空題,也可能是中、難度的解答題。 教學(xué)準(zhǔn)備 多媒體課件 教學(xué)過程 一.知識梳理: 1.直角三角形中各元素間的關(guān)系: 如圖,在△ABC中,C=90°,AB=c,AC=b,BC=a。 (1)三邊之間的關(guān)系:a2+b2=c2。(勾股定理) (2)銳角之間的關(guān)系:A+B=90°; (3)邊角之間的關(guān)系:(銳角三角函數(shù)定義) sinA=cosB=,cosA=sinB=,tanA=。 2.斜三角形中各元素間的關(guān)系: 如圖6-29,在△ABC中,A、B、C為其內(nèi)角,a、b、c分別表示A、B、C的對邊。 (1)三角形內(nèi)
3、角和:A+B+C=π。 (2)正弦定理:在一個(gè)三角形中,各邊和它所對角的正弦的比相等。 。 (R為外接圓半徑) (3)余弦定理:三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍。 a2=b2+c2-2bccosA;b2=c2+a2-2cacosB;c2=a2+b2-2abcosC。 3.三角形的面積公式: (1)△=aha=bhb=chc(ha、hb、hc分別表示a、b、c上的高); (2)△=absinC=bcsinA=acsinB; (3)△===; (4)△=2R2sinAsinBsinC。(R為外接圓半徑) (5)△=; (6)△=;
4、; (7)△=r·s。 4.解三角形:由三角形的六個(gè)元素(即三條邊和三個(gè)內(nèi)角)中的三個(gè)元素(其中至少有一個(gè)是邊)求其他未知元素的問題叫做解三角形.廣義地,這里所說的元素還可以包括三角形的高、中線、角平分線以及內(nèi)切圓半徑、外接圓半徑、面積等等.解三角形的問題一般可分為下面兩種情形:若給出的三角形是直角三角形,則稱為解直角三角形;若給出的三角形是斜三角形,則稱為解斜三角形。 解斜三角形的主要依據(jù)是: 設(shè)△ABC的三邊為a、b、c,對應(yīng)的三個(gè)角為A、B、C。 (1)角與角關(guān)系:A+B+C = π; (2)邊與邊關(guān)系:a + b > c,b + c > a,c + a > b,a-b <
5、c,b-c < a,c-a > b; (3)邊與角關(guān)系: 正弦定理 (R為外接圓半徑); 余弦定理 c2 = a2+b2-2bccosC,b2 = a2+c2-2accosB,a2 = b2+c2-2bccosA; 它們的變形形式有:a = 2R sinA,,。 5.三角形中的三角變換 三角形中的三角變換,除了應(yīng)用上述公式和上述變換方法外,還要注意三角形自身的特點(diǎn)。 (1)角的變換 因?yàn)樵凇鰽BC中,A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。; (2)三角形邊、角關(guān)系定理及面積公式,正弦定理,余弦定理。
6、 r為三角形內(nèi)切圓半徑,p為周長之半。 (3)在△ABC中,熟記并會證明:∠A,∠B,∠C成等差數(shù)列的充分必要條件是∠B=60°;△ABC是正三角形的充分必要條件是∠A,∠B,∠C成等差數(shù)列且a,b,c成等比數(shù)列。 二.典例分析 (xx·浙江高考)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsin A=acos B. (1)求角B的大??; (2)若b=3,sin C=2sin A,求a,c的值. (1)由bsin A=acos B及正弦定理 =,得sin B=cos B, 所以tan B=,所以B=. (2)由sin C=2sin A及=,得c=2a. 由
7、b=3及余弦定理b2=a2+c2-2accos B, 得9=a2+c2-ac. 所以a=,c=2. 在本例(2)的條件下,試求角A的大?。? 解:∵=, ∴sin A===. ∴A=. 由題悟法 1.應(yīng)熟練掌握正、余弦定理及其變形.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡捷. 2.已知兩角和一邊,該三角形是確定的,其解是唯一的;已知兩邊和一邊的對角,該三角形具有不唯一性,通常根據(jù)三角函數(shù)值的有界性和大邊對大角定理進(jìn)行判斷. 以題試法 1.△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,asin Asin B+bcos2
8、A=a. (1)求; (2)若c2=b2+a2,求B. 解:(1)由正弦定理得, sin2Asin B+sin Bcos2A= sin A,即 sin B(sin2A+cos2A)=sin A. 故sin B= sin A,所以= . (2)由余弦定理和c2=b2+a2,得cos B=. 由(1)知b2=2a2, 故c2=(2+)a2.可得cos2B=, 又cos B>0,故cos B=,所以B=45°. 利用正弦、余弦定理判定三角形的形狀 典題導(dǎo)入 在△ABC中a,b,c分別為內(nèi)角A,B,C的對邊,且2asin A=(2b+c)sin B+(2c+b)
9、sin C.
(1)求A的大??;
(2)若sin B+sin C=1,試判斷△ABC的形狀.
(1)由已知,根據(jù)正弦定理得2a2=(2b+c)·b+(2c+b)c,即a2=b2+c2+bc.
由余弦定理得a2=b2+c2-2bccos A,
故cos A=-,∵0
10、,主要有如下兩種方法:
(1)利用正、余弦定理把已知條件轉(zhuǎn)化為邊邊關(guān)系,通過因式分解、配方等得出邊的相應(yīng)關(guān)系,從而判斷三角形的形狀;
(2)利用正、余弦定理把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過三角函數(shù)恒等變形,得出內(nèi)角的關(guān)系,從而判斷出三角形的形狀,此時(shí)要注意應(yīng)用A+B+C=π這個(gè)結(jié)論.
在上述兩種方法的等式變形中,一般兩邊不要約去公因式,應(yīng)移項(xiàng)提取公因式,以免漏解.
以題試法
2.(xx·安徽名校模擬)已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,向量m=(4,-1),n=,且m·n=.
(1)求角A的大?。?
(2)若b+c=2a=2,試判斷△ABC的形狀
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點(diǎn)美食推薦
- XX國有企業(yè)黨委書記個(gè)人述責(zé)述廉報(bào)告及2025年重點(diǎn)工作計(jì)劃
- 世界濕地日濕地的含義及價(jià)值
- 20XX年春節(jié)節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)人到場心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點(diǎn)節(jié)后常見的八大危險(xiǎn)
- 廈門城市旅游介紹廈門景點(diǎn)介紹廈門美食展示
- 節(jié)后開工第一課復(fù)工復(fù)產(chǎn)十注意節(jié)后復(fù)工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓(xùn)
- 深圳城市旅游介紹景點(diǎn)推薦美食探索
- 節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)勿忘安全本心人人講安全個(gè)個(gè)會應(yīng)急
- 預(yù)防性維修管理
- 常見閥門類型及特點(diǎn)
- 設(shè)備預(yù)防性維修
- 2.乳化液泵工理論考試試題含答案