2022年高考數(shù)學一輪復習 第八章 立體幾何 課時規(guī)范練38 直線、平面垂直的判定與性質(zhì) 文 北師大版

上傳人:xt****7 文檔編號:105868265 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大小:702KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學一輪復習 第八章 立體幾何 課時規(guī)范練38 直線、平面垂直的判定與性質(zhì) 文 北師大版_第1頁
第1頁 / 共7頁
2022年高考數(shù)學一輪復習 第八章 立體幾何 課時規(guī)范練38 直線、平面垂直的判定與性質(zhì) 文 北師大版_第2頁
第2頁 / 共7頁
2022年高考數(shù)學一輪復習 第八章 立體幾何 課時規(guī)范練38 直線、平面垂直的判定與性質(zhì) 文 北師大版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學一輪復習 第八章 立體幾何 課時規(guī)范練38 直線、平面垂直的判定與性質(zhì) 文 北師大版》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學一輪復習 第八章 立體幾何 課時規(guī)范練38 直線、平面垂直的判定與性質(zhì) 文 北師大版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學一輪復習 第八章 立體幾何 課時規(guī)范練38 直線、平面垂直的判定與性質(zhì) 文 北師大版 1.(2018江西景德鎮(zhèn)盟校二聯(lián),5)關于直線l與平面α,下列說法正確的是(  ) A.若直線l平行于平面α,則l平行于α內(nèi)的任意一條直線 B.若直線l與平面α相交,則l不平行于α內(nèi)的任意一條直線 C.若直線l不垂直于平面α,則l不垂直于α內(nèi)的任意一條直線 D.若直線l不垂直于平面α,則過l的平面不垂直于α 2.(2018黑龍江哈爾濱師范大學附屬中學三模,3)已知互不相同的直線l,m,n和平面α,β,γ,則下列命題正確的是(  ) A.若l與m為異面直線,l?α,m?β,則α∥

2、β B.若α∥β,l?α,m?β,則l∥m C.若α∩β=l,β∩γ=m,α∩γ=n,l∥γ,則m∥n D.若α⊥γ,β⊥γ,則α∥β 3.(2018遼寧沈陽質(zhì)檢一,6)如圖,E是正方體ABCD-A1B1C1D1的棱C1D1上的一點(不與端點重合),BD1∥平面B1CE,則(  ) A.BD1∥CE B.AC1⊥BD1 C.D1E=2EC1 D.D1E=EC1 4.(2018福建漳州質(zhì)檢,9)在正方形ABCD中,AB=4,點E、F分別是AB、AD的中點,將△AEF沿EF折起到△A'EF的位置,使得A'C=2,在平面A'BC內(nèi),過點B作BG∥平面A'EF交邊A'C上于點G,則A

3、'G=(  ) A. B. C. D. 5.如圖所示的四個正方體圖形中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,能得出AB∥面MNP的圖形的序號是     .(寫出所有符合要求的圖形序號)? 6. (2018黑龍江仿真模擬五,18)在三棱柱ABC-A1B1C1中,已知側(cè)棱與底面垂直,∠CAB=90°,且AC=1,AB=2,E為BB1的中點,M為AC上一點,AM=AC. (1)若三棱錐A1-C1ME的體積為,求AA1的長; (2)證明:CB1∥平面A1EM. 綜合提升組 7. (2018陜西榆林二模,4)如圖

4、,在三棱臺ABC-A1B1C1的6個頂點中任取3個點作平面α,設α∩平面ABC=l,若l∥A1C1,則這3個點可以是(  ) A.B,C,A1 B.B1,C1,A C.A1,B1,C D.A1,B,C1 8.(2018四川“聯(lián)測促改”,11)正方體ABCD-A1B1C1D1棱長為3,點E在邊BC上,且滿足BE=2EC,動點M在正方體表面上運動,并且總保持ME⊥BD1,則動點M的軌跡的周長為(  ) A.6 B.4 C.4 D.3 9. (2018河北衡水調(diào)研二模,18)如圖,四棱錐P-ABCD的底面ABCD是邊長為2的正方形,平面PAB⊥平面ABCD,E是PD的中點,棱PA與平

5、面BCE交于點F. (1)求證:AD∥EF; (2)若△PAB是正三角形,求三棱錐P-BEF的體積. 10.(2018江西景德鎮(zhèn)二聯(lián),17)如圖,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,F為棱AC上靠近A的三等分點,點E在棱BB1上且BF∥平面A1CE. (1)求BE的長; (2)求正三棱柱ABC-A1B1C1被平面A1CE分成的左右兩個幾何體的體積之比. 創(chuàng)新應用組 11. (2018青海西寧二模,19)如圖所示,四邊形ABCD為菱形,AF=2,AF∥DE,D

6、E⊥平面ABCD, (1)求證:AC⊥平面BDE; (2)當DE為何值時,直線AC∥平面BEF?請說明理由. 12.(2018山西大同二模,18)如圖,梯形ABCD中,∠BAD=∠ADC=90°,CD=2,AD=AB=1,四邊形BDEF為正方形,且平面BDEF⊥平面ABCD. (1)求證:DF⊥CE; (2)若AC與BD相交于點O,那么在棱AE上是否存在點G,使得平面OBG∥平面EFC?并說明理由. 課時規(guī)范練38 直線、平面平行的判定與性質(zhì) 1.B 對于A,若直線l平行于平面α,則l與α內(nèi)的任意一條直線平行或異面,A錯;對于B,若直線l與

7、平面α相交,則l不平行于α內(nèi)的任意一條直線,B正確;對于C,若直線l不垂直于平面α,則l可垂直于α內(nèi)的無數(shù)條直線,C錯;對于D,若直線l不垂直于平面α,則過l的平面可垂直于α,D錯,故選B. 2.C 若l與m為異面直線,l?α,m?β,則α與β平行或相交,A錯,排除A;若α∥β,l?α,m?β,則l與m平行或異面,B錯,排除B;若α⊥γ,β⊥γ,則α∥β或α?β,D錯,排除D,故選C. 3.D 設B1C∩BC1=O,如圖,BD1∥平面B1CE,平面BC1D1∩平面B1CE=OE,∴BD1∥OE,∵O為BC1的中點,∴E為C1D1的中點,∴D正確,由異面直線的定義知BD1,CE是異面直線,故

8、A錯;在矩形ABC1D1中,AC1與BD1不垂直,故B錯;C顯然錯,故選D. 4.B 連接AC分別交BD,EF于O,H, ∵E,F分別是AB,AD中點,則EF∥BD,∴, ∴BD∥面A'EF, 又∵BG∥面A'EF,∴面BGD∥面A'EF, 面A'CH分別與兩面交于OG,HA', ∴OG∥HA',∴,A'G=A'C=,故選B. 5.①③ 在①中,由于平面MNP與AB所在的側(cè)面平行,所以AB∥平面MNP;在③中,由于AB與以MP為中位線的三角形的底邊平行,所以AB∥MP,又因為MP?平面MNP,AB?平面MNP.所以AB∥平面MNP.②④中,只須平移AB,即可發(fā)現(xiàn)AB與平面MN

9、P相交.故填①③. 6.(1)解 設AA1=h, ∵A1C1×h=, 三棱錐E-A1C1M的高為2, ∴×2=, 解得h=,即AA1=. (2)證明 如圖,連接AB1交A1E于F,連接MF. ∵E為BB1的中點, ∴AF=AB1, 又AM=AC, ∴MF∥CB1, 而MF?平面A1EM,CB1?平面A1EM, ∴CB1∥平面A1EM. 7.D 當α為平面A1BC1時,因為平面ABC∥平面A1B1C1,平面A1BC1∩平面ABC=l,平面A1BC1∩平面A1B1C1=A1C1,所以l∥A1C1,故選D. 8.A 如圖,在正方體ABCD-A1B1C1D1中,連AC,

10、CB1,B1A,則有BD1⊥平面AB1C. 在BB1、BA上分別取F,G使得BF=2FB1,BG=2GA,連EF,FG,GE, 則有EF∥CB1,EG∥AC,可得平面EFG∥平面AB1C,故得BD1⊥平面EFG, 所以△EFG即為點M的運動軌跡. 由題意得EF=FG=GE=×3=2, 動點M的軌跡的周長為EF+FG+GE=6.選A. 9.(1)證明 因為底面ABCD是邊長為2的正方形,所以BC∥AD. 又因為BC?平面PAD,AD?平面PAD, 所以BC∥平面PAD. 又因為B,C,E,F四點共面,且平面BCEF∩平面PAD=EF, 所以BC∥EF. 又因為BC∥AD

11、,所以AD∥EF. (2)解 因為AD∥EF,E是PD的中點, 所以F為PA的中點,EF=AD=1. 又因為平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊥AB, 所以AD⊥平面PAB,所以EF⊥平面PAB. 又因為△PAB是正三角形, 所以PA=PB=AB=2, 所以S△PBF=S△PBA=. 又EF=1,所以VP-BEF=VE-PBF=×1=. 故三棱錐P-BEF的體積為. 10.解 (1)如圖,作FG∥CC1與A1C交于點G, ∵BE∥CC1, ∴BE∥FG,面BEGF∩面A1CE=EG, ∵BF∥面A1CE, ∴BF∥EG. 于是在平行

12、四邊形BEGF中,BE=FG=AA1=2. (2)×(1+3)×2×, ×2×2×3=3, 左邊幾何體的體積為:=3, ∴左右兩個幾何體的體積之比為=5∶4. 11.(1)證明 因為DE⊥平面ABCD,AC?平面ABCD, 所以AC⊥DE, 菱形ABCD中,AC⊥BD, DE∩BD=D,DE?面BDE,BD?面BDE. 所以AC⊥平面BDE. (2)解 當DE=4時,直線AC∥平面BEF,理由如下: 設菱形ABCD中,AC交BD于O, 取BE的中點M,連接OM,則OM為△BDE的中位線, 所以OM∥DE,且OM=DE=2, 又AF∥DE,AF=DE=2, 所以

13、OM∥AF,且OM=AF. 所以四邊形AOMF為平行四邊形. 則AC∥MF. 因為AC?平面BEF,FM?平面BEF, 所以直線AC∥平面BEF. 12.(1)證明 連接EB.因為在梯形ABCD中,∠BAD=∠ADC=90°,AB=AD=1,DC=2, ∴BD=,BC=, ∴BD2+BC2=CD2,∴BC⊥BD, 又因為平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,BC?平面ABCD, ∴BC⊥平面BDEF,∴BC⊥DF,又因為 正方形BDEF中,DF⊥EB且EB,BC?平面BCE,EB∩BC=B, ∴DF⊥平面BCE, 又∵CE?平面BCE,∴DF⊥CE. (2)解 在棱AE上存在點G,使得平面OBG∥平面EFC,且,證明如下: 因為梯形ABCD中,∠BAD=∠ADC=90°,AB=1,DC=2, ∴AB∥DC,∴, 又∵,∴OG∥CE, 又因為正方形BDEF中,EF∥OB,且OB,OG?平面EFC,EF,CE?平面EFC, ∴OB∥平面EFC,OG∥平面EFC, 又∵OB∩OG=O,且OB,OG?平面OBG,所以平面OBG∥平面EFC.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!