2022高考數(shù)學一本策略復習 專題六 算法、復數(shù)、推理與證明、概率與統(tǒng)計 第三講 概率課后訓練 文

上傳人:xt****7 文檔編號:105872964 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大?。?48KB
收藏 版權申訴 舉報 下載
2022高考數(shù)學一本策略復習 專題六 算法、復數(shù)、推理與證明、概率與統(tǒng)計 第三講 概率課后訓練 文_第1頁
第1頁 / 共7頁
2022高考數(shù)學一本策略復習 專題六 算法、復數(shù)、推理與證明、概率與統(tǒng)計 第三講 概率課后訓練 文_第2頁
第2頁 / 共7頁
2022高考數(shù)學一本策略復習 專題六 算法、復數(shù)、推理與證明、概率與統(tǒng)計 第三講 概率課后訓練 文_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學一本策略復習 專題六 算法、復數(shù)、推理與證明、概率與統(tǒng)計 第三講 概率課后訓練 文》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學一本策略復習 專題六 算法、復數(shù)、推理與證明、概率與統(tǒng)計 第三講 概率課后訓練 文(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高考數(shù)學一本策略復習 專題六 算法、復數(shù)、推理與證明、概率與統(tǒng)計 第三講 概率課后訓練 文 一、選擇題 1.(2018·高考全國卷Ⅲ)若某群體中的成員只用現(xiàn)金支付的概率為0.45,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為0.15,則不用現(xiàn)金支付的概率為(  ) A.0.3    B.0.4 C.0.6 D.0.7 解析:由題意可知不用現(xiàn)金支付的概率為1-0.45-0.15=0.4. 故選B. 答案:B 2.(2018·云南模擬)在正方形ABCD內隨機生成n個點,其中在正方形ABCD內切圓內的點共有m個,利用隨機模擬的方法,估計圓周率π的近似值為(  ) A. B.

2、 C. D. 解析:依題意,設正方形的邊長為2a, 則該正方形的內切圓半徑為a,于是有≈, 即π≈,即可估計圓周率π的近似值為. 答案:C 3.(2018·滄州聯(lián)考)已知函數(shù)f(x)=,在區(qū)間(-1,4)上任取一點,則使f′(x)>0的概率是(  ) A. B. C. D. 解析:f′(x)=,由f′(x)>0可得f′(x)=>0,解得0<x<2,根據(jù)幾何概型的概率計算公式可得所求概率P==. 答案:B 4.在區(qū)間[0,1]上隨意選擇兩個實數(shù)x,y,則使≤1成立的概率為(  ) A.    B. C.    D.

3、 解析:如圖所示,試驗的全部結果構成正方形區(qū)域,使得≤1成立的平面區(qū)域為以坐標原點O為圓心,1為半徑的圓的與x軸正半軸,y軸正半軸圍成的區(qū)域,由幾何概型的概率計算公式得,所求概率P==. 答案:B 5.已知向量a=(x,y),b=(1,-2),從6張大小相同分別標有號碼1,2,3,4,5,6的卡片中,有放回地抽取兩張,x,y分別表示第一次、第二次抽取的卡片上的號碼,則滿足a·b>0的概率是(  ) A.    B. C.    D. 解析:設(x,y)表示一個基本事件,則兩次抽取卡片的所有基本事件有6×6=36個,a·b>0,

4、即x-2y>0,滿足x-2y>0的基本事件有(3,1),(4,1),(5,1),(6,1),(5,2),(6,2),共6個,所以所求概率P==. 答案:D 6.(2018·湖南五校聯(lián)考)在矩形ABCD中,AB=2AD,在CD上任取一點P,△ABP的最大邊是AB的概率是(  ) A.    B. C.-1    D.-1 解析:分別以A,B為圓心,AB的長為半徑畫弧,交CD于P1,P2,則當P在線段P1P2間運動時,能使得△ABP的最大邊是AB,易得=-1,即△ABP的最大邊是AB的概率是-1. 答案:D 7.(20

5、18·天津六校聯(lián)考)連擲兩次骰子分別得到點數(shù)m,n,則向量a=(m,n)與向量b=(-1,1)的夾角θ>90?的概率是(  ) A. B. C. D. 解析:連擲兩次骰子得到的點數(shù)(m,n)的所有基本事件為(1,1),(1,2),…,(6,6),共36個. ∵(m,n)·(-1,1)=-m+n<0, ∴m>n.符合要求的事件為(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共15個,∴所求概率P==. 答案:A 8.由不等式組確定的平面區(qū)域記為Ω1,不等式組確定的平面區(qū)域記為Ω2,在Ω1中隨機取一點,

6、則該點恰好在Ω2內的概率為(  ) A. B. C. D. 解析:由題意作圖,如圖所示,Ω1的面積為×2×2=2,圖中陰影部分的面積為2-××1=,則所求的概率P==. 答案:D 二、填空題 9.(2018·長沙模擬)在棱長為2的正方體ABCD-A1B1C1D1中,點O為底面ABCD的中心,在正方體ABCD-A1B1C1D1內隨機取一點P,則點P到點O的距離大于1的概率為________. 解析:由題意,在正方體中與點O距離等于1的是個半球面,V正=23=8,V半球=×π×13=π, ==,∴所求概率P=1-. 答案:1- 10.如圖,在等腰直角△ABC中,過直角頂點C作射

7、線CM交AB于M,則使得AM小于AC的概率為________. 解析:當AM=AC時,△ACM為以A為頂點的等腰三角形,∠ACM==67.5?. 當∠ACM<67.5?時,AM<AC, 所以AM小于AC的概率 P===. 答案: 11.某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,抽獎方法是:從裝有2個紅球A1,A2和1個白球B的甲箱與裝有2個紅球a1,a2和2個白球b1,b2的乙箱中,各隨機摸出1個球,若摸出的2個球都是紅球則中獎,否則不中獎,則中獎的概率是________. 解析:由題意,所有可能的結果是{A1,a1},{A1,a2},{A1,b1},{A1,

8、b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2},共12種,其中摸出的2個球都是紅球的結果為{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4種,所以中獎的概率為P==. 答案: 12.一只受傷的候鳥在如圖所示(直角梯形ABCD)的草原上飛,其中AD=3,CD=2,BC=5,它可能隨機落在該草原上任何一處(點),若落在扇形沼澤區(qū)域(圖中的陰影部分)CDE以外候鳥能生還,則該候鳥生還的概率為________. 解析:直角梯形ABCD的面積S1=×(3+5)×2=8,扇形CDE的面積S2=π×

9、22=π,根據(jù)幾何概型的概率公式,得候鳥生還的概率P===1-. 答案:1- 三、解答題 13.(2018·寶雞模擬)為了解我市的交通狀況,現(xiàn)對其6條道路進行評估,得分分別為5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如下表: 評估的平均得分 (0,6) [6,8) [8,10] 全市的總體交通狀況等級 不合格 合格 優(yōu)秀 (1)求本次評估的平均得分,并參照上表估計我市的總體交通狀況等級; (2)用簡單隨機抽樣的方法從這6條道路中抽取2條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超過0.5的概率. 解析:(1)6條

10、道路的平均得分為×(5+6+7+8+9+10)=7.5,∴該市的總體交通狀況等級為合格. (2)設A表示事件“樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5”. 從6條道路中抽取2條的得分組成的所有基本事件為(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15個基本事件. 事件A包括(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共7個基本事件. ∴P(A)=. 故該樣本平均數(shù)與總體平均數(shù)之差的絕對值不

11、超過0.5的概率為. 14.(2018·西安八校聯(lián)考)從某企業(yè)生產的某種產品中抽取100件,測量這些產品的質量指標值,由測量結果得到如圖所示的頻率分布直方圖,質量指標值落在區(qū)間[55,65),[65,75),[75,85]內的頻率之比為4∶2∶1. (1)求這些產品質量指標值落在區(qū)間[75,85]內的頻率; (2)用分層抽樣的方法在區(qū)間[45,75)內抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意抽取2件產品,求這2件產品都在區(qū)間[45,65)內的概率. 解析:(1)設質量指標值落在區(qū)間[75,85]內的頻率為x,則質量指標值落在區(qū)間[55,65),[65,75)內的頻率分

12、別為4x,2x. 依題意得(0.004+0.012+0.019+0.030)×10+4x+2x+x=1,解得x=0.05. 所以質量指標值落在區(qū)間[75,85]內的頻率為0.05. (2)由(1)得,質量指標值落在區(qū)間[45,55),[55,65),[65,75)內的頻率分別為0.3,0.2,0.1. 用分層抽樣的方法在區(qū)間[45,75)內抽取一個容量為6的樣本,則在區(qū)間[45,55)內應抽取6×=3件,記為A1,A2,A3; 在區(qū)間[55,65)內應抽取6×=2件,記為B1,B2;在區(qū)間[65,75)內應抽取6×=1件,記為C. 設“從樣本中任意抽取2件產品,這2件產品都在區(qū)間[

13、45,65)內”為事件M,則所有的基本事件有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C),(A2,A3),(A2,B1),(A2,B2),(A2,C),(A3,B1),(A3,B2),(A3,C),(B1,B2),(B1,C),(B2,C),共15種, 事件M包含的基本事件有: (A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10種,所以這2件產品都在區(qū)間[45,65)內的概率P==. 15.(2018·長沙模擬)為了打好脫貧攻堅戰(zhàn),某貧困縣

14、農科院針對玉米種植情況進行調研,力爭有效地改良玉米品種,為農民提供技術支援.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米. (1)列出2×2列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過0.01的前提下,認為抗倒伏與玉米矮莖有關? (2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進行雜交試驗,則選取的植株均為矮莖的概率是多少? 附: P(K2≥k0) 0.10 0.05 0.010 0.001 k0 2.706 3.841 6.635 10.8

15、28 K2=,其中n=a+b+c+d. 解析:(1)根據(jù)統(tǒng)計數(shù)據(jù)得2×2列聯(lián)表如下: 抗倒伏 易倒伏 總計 矮莖 15 4 19 高莖 10 16 26 總計 25 20 45 由于K2的觀測值k=≈7.287>6.635,因此可以在犯錯誤的概率不超過0.01的前提下,認為抗倒狀與玉米矮莖有關. (2)由題意得,抽到的高莖玉米有2株,設為A,B,抽到的矮莖玉米有3株,設為a,b,c,從這5株玉米中取出2株的取法有AB,Aa,Ab,Ac,Ba,Bb,Bc,ab,ac,bc,共10種,其中均為矮莖的選取方法有ab,ac,bc,共3種,因此選取的植株均為矮莖的概率是.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!