(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第9講 指數(shù)與指數(shù)函數(shù)導(dǎo)學(xué)案 新人教A版

上傳人:彩*** 文檔編號:107017012 上傳時(shí)間:2022-06-14 格式:DOCX 頁數(shù):11 大?。?.31MB
收藏 版權(quán)申訴 舉報(bào) 下載
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第9講 指數(shù)與指數(shù)函數(shù)導(dǎo)學(xué)案 新人教A版_第1頁
第1頁 / 共11頁
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第9講 指數(shù)與指數(shù)函數(shù)導(dǎo)學(xué)案 新人教A版_第2頁
第2頁 / 共11頁
(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第9講 指數(shù)與指數(shù)函數(shù)導(dǎo)學(xué)案 新人教A版_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第9講 指數(shù)與指數(shù)函數(shù)導(dǎo)學(xué)案 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第9講 指數(shù)與指數(shù)函數(shù)導(dǎo)學(xué)案 新人教A版(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、第9講 指數(shù)與指數(shù)函數(shù) 【課程要求】 1.了解指數(shù)冪的含義、掌握冪的運(yùn)算. 2.理解指數(shù)函數(shù)的概念、理解指數(shù)函數(shù)的單調(diào)性與其圖象特征并能靈活應(yīng)用. 3.知道指數(shù)函數(shù)是一類重要的函數(shù)模型. 對應(yīng)學(xué)生用書p23 【基礎(chǔ)檢測】 1.判斷下列結(jié)論是否正確(請?jiān)诶ㄌ栔写颉啊獭被颉啊痢? (1)=()n=a(n∈N*).(  ) (2)分?jǐn)?shù)指數(shù)冪a可以理解為個(gè)a相乘.(  ) (3)函數(shù)y=3·2x與y=2x+1都不是指數(shù)函數(shù).(  ) (4)若am<an(a>0,且a≠1),則m<n.(  ) (5)函數(shù)y=2-x在R上為單調(diào)減函數(shù).(  ) [答案] (1)× (2)

2、× (3)√ (4)× (5)√ 2.[必修1p59A組T4]化簡(x<0,y<0)=________. [答案]-2x2y 3.[必修1p59A組T7]已知a=,b=,c=,則a,b,c的大小關(guān)系是____________. [解析]∵y=是減函數(shù), ∴>>, 即a>b>1, 又c=<=1, ∴c

3、點(diǎn)P.即這個(gè)點(diǎn)的坐標(biāo)不隨a的改變而改變,只需要讓a不起作用即可,令x-1=0?x=1,此時(shí)y=5,故圖象恒過(1,5). [答案]A 5.計(jì)算:×+8×-=____________. [解析]原式=×1+2×2-=2. [答案]2 6.已知函數(shù)f(x)=ax(a>0,a≠1)在[1,2]上的最大值比最小值大,則a的值為____________. [解析]當(dāng)01時(shí),a2-a=, ∴a=或a=0(舍去). 綜上所述,a=或. [答案]或 【知識要點(diǎn)】 1.分?jǐn)?shù)指數(shù)冪 (1)我們規(guī)定正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是a=(

4、a>0,m,n∈N*,且n>1).于是,在條件a>0,m,n∈N*,且n>1下,根式都可以寫成分?jǐn)?shù)指數(shù)冪的形式.正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義與負(fù)整數(shù)指數(shù)冪的意義相仿,我們規(guī)定a-=(a>0,m,n∈N*,且n>1).0的正分?jǐn)?shù)指數(shù)冪等于__0__;0的負(fù)分?jǐn)?shù)指數(shù)冪__沒有意義__. (2)根式的性質(zhì): ①a的n(n>1,n∈N*)次方根,當(dāng)n為奇數(shù)時(shí),有一個(gè)n次方根為____;當(dāng)n為偶數(shù)時(shí),若a>0,有兩個(gè)互為相反數(shù)的n次方根為__±__,若a=0,其n次方根為__0__,若a<0,則無實(shí)數(shù)根. ②當(dāng)n為奇數(shù)時(shí),=__a__; 當(dāng)n為偶數(shù)時(shí),=|a|=____. (3)有理數(shù)指數(shù)冪的運(yùn)算

5、性質(zhì):aras=__ar+s__,(ar)s=__ars__,(ab)r=__arbr__,其中a>0,b>0,r,s∈Q. 2.指數(shù)函數(shù)圖象與性質(zhì) y=ax a>1 00時(shí),__y>1__;當(dāng)x<0時(shí),__00時(shí),__01__ (6)在(-∞,+∞)上是__增函數(shù)__ (7)在(-∞,+∞)上是__減函數(shù)__ 3.基本結(jié)論 (1)指數(shù)函數(shù)圖

6、象的畫法 畫指數(shù)函數(shù)y=ax(a>0,且a≠1)的圖象,應(yīng)抓住三個(gè)關(guān)鍵點(diǎn):(1,a),(0,1),. (2)指數(shù)函數(shù)的圖象與底數(shù)大小的比較 如圖是指數(shù)函數(shù)(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的圖象,底數(shù)a,b,c,d與1之間的大小關(guān)系為c>d>1>a>b>0.由此我們可得到以下規(guī)律:在第一象限內(nèi),指數(shù)函數(shù)y=ax(a>0,a≠1)的圖象越高,底數(shù)越大. (3)指數(shù)函數(shù)y=ax(a>0,a≠1)的圖象和性質(zhì)跟a的取值有關(guān),要特別注意應(yīng)分a>1與0<a<1來研究. 對應(yīng)學(xué)生用書p24 指數(shù)冪的運(yùn)算 例1 求值與化簡: (

7、1)÷; (2)(1.5)-2+(-9.6)0-++. [解析] (1)原式=ab=4a; (2)原式=+1-+4-π+π-2=+1-+2=3. [小結(jié)]指數(shù)冪運(yùn)算的一般原則: (1)指數(shù)冪的運(yùn)算首先將根式、分?jǐn)?shù)指數(shù)冪統(tǒng)一為分?jǐn)?shù)指數(shù)冪,以便利用法則計(jì)算. (2)先乘除后加減,負(fù)指數(shù)冪化成正指數(shù)冪的倒數(shù). (3)底數(shù)是負(fù)數(shù),先確定符號;底數(shù)是小數(shù),先化成分?jǐn)?shù);底數(shù)是帶分?jǐn)?shù)的,先化成假分?jǐn)?shù). (4)運(yùn)算結(jié)果不能同時(shí)含有根號和分?jǐn)?shù)指數(shù),也不能既有分母又有負(fù)指數(shù). 1.(多選)若實(shí)數(shù)a>0,則下列等式成立的是(  )                    A.(-2)-2

8、=4B.2a-3= C.(-2)0=1D.= [解析]對于A,(-2)-2=,故A錯(cuò)誤;對于B,2a-3=,故B錯(cuò)誤;對于C,(-2)0=1,故C正確;對于D,=,故D正確. [答案]CD 2.化簡:=__________. [解析]原式==a---·b+-=. [答案] 指數(shù)函數(shù)的圖象及應(yīng)用 例2 (1)若函數(shù)y=ax-b(a>0,且a≠1)的圖象經(jīng)過第二、三、四象限,則ab的取值范圍是(  ) A.(1,+∞) B.(0,+∞) C.(0,1) D.無法確定 [解析]因?yàn)楹瘮?shù)經(jīng)過第二、三、四象限,所以函數(shù)單調(diào)遞減且圖象與y軸的交點(diǎn)在y軸負(fù)半軸上.令x=0,則y=a

9、0-b=1-b,由題意得解得故ab∈(0,1),故選C. [答案]C (2)當(dāng)x∈[1,2]時(shí),函數(shù)y=x2與y=ax(a>0)的圖象有交點(diǎn),則a的取值范圍是(  ) A.B. C.D. [解析]當(dāng)a>1時(shí),如圖①所示,使得兩個(gè)函數(shù)圖象在[1,2]上有交點(diǎn),需滿足·22≥a2,即1f(c)>f(b),則下列結(jié)論中,一定成立的是(  ) A.

10、b<0 B.a(chǎn)<0,c>0 C.2-a<2c D.2a+2c<2 [解析]作出函數(shù)f(x)=|2x-1|的圖象如圖中實(shí)線所示, ∵af(c)>f(b), 結(jié)合圖象知0f(c),即1-2a>2c-1, ∴2a+2c<2. [答案]BD [小結(jié)](1)已知函數(shù)解析式判斷其圖象一般是取特殊點(diǎn),判斷選項(xiàng)中的圖象是否過這些點(diǎn),若不滿足則排除. (2)對于有關(guān)指數(shù)型函數(shù)的圖象可從指數(shù)函數(shù)的圖象通過平移、伸縮、對稱變

11、換而得到.特別地,當(dāng)?shù)讛?shù)a與1的大小關(guān)系不確定時(shí)應(yīng)注意分類討論. (3)有關(guān)指數(shù)方程、不等式問題的求解,往往是利用相應(yīng)的指數(shù)型函數(shù)圖象,數(shù)形結(jié)合求解. (4)判斷指數(shù)函數(shù)圖象上底數(shù)大小的問題,可以先通過令x=1得到底數(shù)的值再進(jìn)行比較. 3.函數(shù)f(x)=2|x-1|的圖象是(  ) [解析]由題意知f(x)=結(jié)合圖象知選B. [答案]B 4.如圖,過原點(diǎn)O的直線與函數(shù)y=2x的圖象交于A,B兩點(diǎn),過B作y軸的垂線交函數(shù)y=4x的圖象于點(diǎn)C,若AC平行于y軸,則點(diǎn)A的坐標(biāo)為__________. [解析]設(shè)A(n,2n),B(m,2m),則C,因?yàn)锳C平行于y軸,所以n

12、=,所以A,B(m,2m),又因?yàn)锳,B,O三點(diǎn)共線,所以kOA=kOB,所以=,即n=m-1,又由n=,解得n=1,所以點(diǎn)A的坐標(biāo)為(1,2). [答案] (1,2) 5.若函數(shù)f(x)=2|x+a|(a∈R)滿足f(1-x)=f(1+x),f(x)在區(qū)間[m,n]上的最大值記為f(x)max,最小值記為f(x)min,若f(x)max-f(x)min=3,則n-m的取值范圍是__________. [解析]因?yàn)楹瘮?shù)f(x)=2|x+a|(a∈R)滿足f(1-x)=f(1+x),所以f(x)的圖象關(guān)于直線x=1對稱,所以a=-1,所以f(x)=2|x-1|. 作出函數(shù)y=f(x)的圖

13、象如圖所示. 當(dāng)m<n≤1或1≤m<n時(shí),離對稱軸越遠(yuǎn),n-m差越小,由y=2x-1與y=21-x的性質(zhì)知極限值為0.當(dāng)m<1<n時(shí),函數(shù)f(x)在區(qū)間[m,n]上的最大值與最小值的差為f(x)max-f(x)min=2|±2|-20=3,則n-m取得最大值是2-(-2)=4,所以n-m的取值范圍是(0,4]. [答案] (0,4] 指數(shù)函數(shù)的性質(zhì)及應(yīng)用 例3 (1)已知a,b∈(0,1)∪(1,+∞),當(dāng)x>0時(shí),1<bx<ax,則(  ) A.0<b<a<1B.0<a<b<1 C.1<b<aD.1<a<b [解析]∵x>0時(shí),1<bx,∴b>1. ∵x>0時(shí),bx<ax

14、,∴x>0時(shí),>1. ∴>1,∴a>b,∴1<b<a,故選C. [答案]C (2)已知函數(shù)f(x)=的值域是[-8,1],則實(shí)數(shù)a的取值范圍是(  ) A.(-∞,-3] B.[-3,0) C.[-3,-1] D.{-3} [解析]當(dāng)0≤x≤4時(shí),f(x)∈[-8,1], 當(dāng)a≤x<0時(shí),f(x)∈, ∴?[-8,1], 即-8≤-<-1,即-3≤a<0, ∴實(shí)數(shù)a的取值范圍是[-3,0). [答案]B (3)已知函數(shù)y=b+ax2+2x(a,b為常數(shù),且a>0,a≠1)在區(qū)間上有最大值3,最小值,則a,b的值為__________. [解析]令t=x2+2x=(

15、x+1)2-1, ∵x∈,∴t∈[-1,0]. ①若a>1,函數(shù)f(t)=at在[-1,0]上為增函數(shù), ∴at∈,b+ax2+2x∈, 依題意得解得 ②若0

16、c=,則(  ) A.a(chǎn),∴b,∴a>c, ∴b-3.又a<0,∴-3

17、1)的值域?yàn)閇1,+∞),則f(-4)與f(1)的大小關(guān)系是__________. [解析]因?yàn)閨x+1|≥0,函數(shù)f(x)=a|x+1|(a>0,且a≠1)的值域?yàn)閇1,+∞),所以a>1.由于函數(shù)f(x)=a|x+1|在(-1,+∞)上是增函數(shù),且它的圖象關(guān)于直線x=-1對稱,則函數(shù)f(x)在(-∞,-1)上是減函數(shù),故f(1)=f(-3),f(-4)>f(1). [答案]f(-4)>f(1) 對應(yīng)學(xué)生用書p25 (2019·全國卷Ⅰ理)已知a=log20.2,b=20.2,c=0.20.3,則(  ) A.a(chǎn)20=1, 0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!