正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)

上傳人:good****022 文檔編號:116534252 上傳時間:2022-07-05 格式:DOC 頁數(shù):11 大?。?27KB
收藏 版權(quán)申訴 舉報 下載
正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)_第1頁
第1頁 / 共11頁
正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)_第2頁
第2頁 / 共11頁
正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)》由會員分享,可在線閱讀,更多相關(guān)《正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 6.1正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì) 一、復(fù)習引入1、復(fù)習(1)函數(shù)的概念在某個變化過程中有兩個變量、,若對于在某個實數(shù)集合內(nèi)的每一個確定的值,按照某個對應(yīng)法則,都有唯一確定的實數(shù)值與它對應(yīng),則就是的函數(shù),記作,。(2)三角函數(shù)線設(shè)任意角的頂點在原點,始邊與軸的非負半軸重合,終邊與單位圓相交于點,過作軸的垂線,垂足為;過點作單位圓的切線,設(shè)它與角的終邊(當在第一、四象限角時)或其反向延長線(當為第二、三象限角時)相交于.規(guī)定:當與軸同向時為正值,當與軸反向時為負值; 當與軸同向時為正值,當與軸反向時為負值; 當與軸同向時為正值,當與軸反向時為負值;根據(jù)上面規(guī)定,則,由正弦、余弦、正切三角比的

2、定義有: 網(wǎng);這幾條與單位圓有關(guān)的有向線段叫做角的正弦線、余弦線、正切線。二、講授新課【問題驅(qū)動1】結(jié)合我們剛學過的三角比,就以正弦(或余弦)為例,對于每一個給定的角和它的正弦值(或余弦值)之間是否也存在一種函數(shù)關(guān)系?若存在,請對這種函數(shù)關(guān)系下一個定義;若不存在,請說明理由1、正弦函數(shù)、余弦函數(shù)的定義(1)正弦函數(shù):;(2)余弦函數(shù):【問題驅(qū)動2】如何作出正弦函數(shù)、余弦函數(shù)的函數(shù)圖象?2、正弦函數(shù)的圖像(1)的圖像【方案1】幾何描點法步驟1:等分、作正弦線將單位圓等分,作三角函數(shù)線(正弦線)得三角函數(shù)值;步驟2:描點平移定點,即描點;步驟3:連線用光滑的曲線順次連結(jié)各個點小結(jié):幾何描點法作圖精

3、確,但過程比較繁?!痉桨?】五點法步驟1:列表列出對圖象形狀起關(guān)鍵作用的五點坐標;步驟2:描點定出五個關(guān)鍵點;步驟3:連線用光滑的曲線順次連結(jié)五個點小結(jié):的五個關(guān)鍵點是、。(2)的圖像由,所以函數(shù)在區(qū)間上的圖像與在區(qū)間上的圖像形狀一樣,只是位置不同.于是我們只要將函數(shù)的圖像向左、右平行移動(每次平行移動個單位長度),就可以得到正弦函數(shù)的圖像。3、余弦函數(shù)的圖像(1)的圖像(2)的圖像 圖像平移法 由,可知只須將的圖像向左平移即可。三、例題舉隅例、作出函數(shù)的大致圖像;【設(shè)計意圖】考察利用“五點法”作正弦函數(shù)、余弦函數(shù)圖像【解】 列表描點在直角坐標系中,描出五個關(guān)鍵點:、 、連線練習、作出函數(shù)的大

4、致圖像二、性質(zhì)1定義域:正弦函數(shù)、余弦函數(shù)的定義域都是實數(shù)集R或(,),分別記作:ysinx,xR ycosx,xR2值域因為正弦線、余弦線的長度小于或等于單位圓的半徑的長度,所以sinx1,cosx1,即1sinx1,1cosx1也就是說,正弦函數(shù)、余弦函數(shù)的值域都是1,1其中正弦函數(shù)y=sinx,xR當且僅當x2k,kZ時, 取得最大值1當且僅當x2k,kZ時,取得最小值1而余弦函數(shù)ycosx,xR當且僅當x2k,kZ時,取得最大值1當且僅當x(2k1),kZ時,取得最小值13周期性由sin(x2k)sinx,cos(x2k)cosx (kZ)知:正弦函數(shù)值、余弦函數(shù)值是按照一定規(guī)律不斷重

5、復(fù)地取得的。一般地,對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有f(xT)f(x),那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個函數(shù)的周期。由此可知,2,4,2,4,2k(kZ且k0)都是這兩個函數(shù)的周期對于一個周期函數(shù)f(x),如果在它所有的周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期。4奇偶性由sin(x)sinx, cos(x)cosx可知:ysinx為奇函數(shù), ycosx為偶函數(shù)正弦曲線關(guān)于原點O對稱,余弦曲線關(guān)于y軸對稱5單調(diào)性結(jié)合上述周期性可知:正弦函數(shù)在每一個閉區(qū)間2k,2k(kZ)上都是增函數(shù),其值從1增大到1;在

6、每一個閉區(qū)間2k,2k(kZ)上都是減函數(shù),其值從1減小到1。余弦函數(shù)在每一個閉區(qū)間(2k1),2k(kZ)上都是增函數(shù),其值從1增加到1;在每一個閉區(qū)間2k,(2k1)(kZ)上都是減函數(shù),其值從1減小到1y=sinxy= cosx圖 象定義域RR值 域-1,1-1,1最 值當且僅當x2k,kZ時,取得最大值1當且僅當x2k,kZ時,取得最小值1當且僅當x2k,kZ時,取得最大值1當且僅當x(2k1),kZ時,取得最小值1周期性2p2p奇偶性奇函數(shù)偶函數(shù)單調(diào)性在閉區(qū)間2k,2k(kZ)上單調(diào)遞增,;在閉區(qū)間2k,2k(kZ)上單調(diào)遞減在閉區(qū)間(2k1),2k(kZ)上單調(diào)遞增;在每一個閉區(qū)間

7、2k,(2k1)(kZ)上單調(diào)遞減典型例題(3個,基礎(chǔ)的或中等難度)例1:求使下列函數(shù)取得最大值的自變量x的集合,并說出最大值是什么。(1)ycosx1,xR; (2)ysin2x,xR解:(1)使函數(shù)ycosx1,xR取得最大值的x的集合,就是使函數(shù)ycosx,xR取得最大值的x的集合xx2k,kZ。函數(shù)ycosx1,xR的最大值是112。(2)令Z2x,那么xR必須并且只需ZR,且使函數(shù)ysinZ,ZR取得最大值的Z的集合是ZZ2k,kZ由2xZ2k,得xk即 使函數(shù)ysin2x,xR取得最大值的x的集合是xxk,kZ函數(shù)ysin2x,xR的最大值是1。例2:求下列函數(shù)的單調(diào)區(qū)間(1)yc

8、osx (2)y=sin(4x-) (3)y=3sin(-2x)解:(1)由ycosx的圖象可知:單調(diào)增區(qū)間為2k,(2k1)(kZ)單調(diào)減區(qū)間為(2k1),2k(kZ) (2)當2k-4x-2k+,函數(shù)的遞增區(qū)間是-,+(kZ)當2k+4x-2k+函數(shù)的遞減區(qū)間是+,+(kZ)(3)當2k-2x2k+時,函數(shù)單調(diào)遞減, 函數(shù)單調(diào)遞減區(qū)間是k-,k+(kZ)當2k+-2x2k+時,函數(shù)單調(diào)遞增, 函數(shù)單調(diào)遞減區(qū)間是k+,k+(kZ)例3:求下列三角函數(shù)的周期:(1) y=sin(x+) (2) y=cos2x (3) y=3sin(+)解:(1) 令z= x+ 而 sin(2p+z)=sinz

9、 即:f (2p+z)= f (z)f (x+2p)+=f (x+) 周期T=2p.(2)令z=2x f (x)=cos2x=cosz=cos(z+2p)=cos(2x+2p)=cos2(x+p)即:f (x+p)=f (x) 周期T=p。 (3)令z=+ 則f (x)=3sinz=3sin(z+2p)=3sin(+2p)=3sin()=f (x+4p) 周期T=4p。 注:yAsin(x)的周期T=。(四)課堂練習(2個,基礎(chǔ)的或中等難度)1、求使下列函數(shù)y=3-cos取得最大值的自變量x的集合,并說出最大值是什么。解:當cos=-1,即=2kp+p,kZ,x|x=4kp+2p,kZ ,y=

10、3-cos取得最大值。2、求y=的周期。解:y=(1-cos2x)=-cos2x,T=p。3、求函數(shù)y=3cos(2x+)的單調(diào)區(qū)間。解:當2k2x+2k+p時,函數(shù)單調(diào)遞減, 函數(shù)的單調(diào)遞減區(qū)間是k-,k+(kZ)當2k-p2x+2k時,函數(shù)單調(diào)遞增, 函數(shù)的單調(diào)遞增區(qū)間是k-,k-(kZ)(五)拓展探究(2個)1、求下列函數(shù)的周期: (1)y=sin(2x+)+2cos(3x-) (2)y=|sinx| (3)y=2sinxcosx+2cos2x-1解:(1)y1=sin(2x+) 最小正周期T1=p y2=2cos(3x-) 最小正周期 T2=T為T1 ,T2的最小公倍數(shù)2p T=2p

11、(2)T=p (3) y=sin2x+cos2x=2sin(2x+) T=p2、求下列函數(shù)的最值: (1)y=sin(3x+)-1 (2)y=sin2x-4sinx+5 (3)y=解:(1) 當3x+=2kp+即 x= (kZ)時,ymax=0當3x+=2kp-即x= (kZ)時,ymin=-2(2) y=(sinx-2)2+1 當x=2kp- kZ時,ymax=10當x=2kp- kZ時,ymin= 2(3) y=-1+ 當x=2kp+p kZ時,ymax=2當x=2kp kZ時, ymin= 作業(yè)一、填空題1、函數(shù)y=cos(x-)的奇偶性是_。2、函數(shù)y=-5sinx+1的最大值是_,此

12、時相應(yīng)的x的值是_。3、函數(shù)y=sinxcosx的最小正周期是_。4、函數(shù)y=sinxcos(x+)+cosxsin(x+)的最小正周期是_。5、函數(shù)y=3cos(2x+)的單調(diào)遞減區(qū)間是_。6、函數(shù)y=sinx和y=cosx都為減函數(shù)的區(qū)間是_。7、函數(shù)y=sin(-2x)的單調(diào)遞增區(qū)間是_。8、已知函數(shù)y=f(x)是以為周期,且最大值為3,最小值為-1,則這個函數(shù)的解析式可以是_。二、選擇題1、函數(shù)y=sinx,x,的值域是 ( )(A)-1,1 (B),1 (C), (D),12、下列函數(shù)中,周期是的函數(shù)是 ( )(A)y=sinpx (B)y=cos2x (C)y=sin (D)y=s

13、in4k3、下列函數(shù)是奇函數(shù)的是 ( )(A)y=sin|x| (B)y=xsin|x| (C)y=-|sinx| (D)y=sin(-|x|)4*、函數(shù)y=sin(2x+)+cos(2x+)的最小正周期和最大值分別為 ( )(A)p,1 (B)p, (C)2p,1 (D)2p,三、解答題1、已知函數(shù)y=acosx-2b的最小值為-2,最大值為4,求a和b的值。2、求函數(shù)y=2+5cosx-1的值域。3、判斷下列函數(shù)的奇偶性:(1)y=cos(2x-); (2)y=xsinx+cos3x4、求函數(shù)y=-sinxcosx的單調(diào)區(qū)間。一、填空題1、 奇函數(shù); 2、 6, x|x=2k-,kZ ;

14、3、p;4、; 5、k-,k+(kZ); 6、2k+,2k+p(kZ)7、k+,k+(kZ); 8、y=2sin6x+1(答案不唯一)二、1、B; 2、D; 3、B; 4、A(y=sin2x+cos2x+cos2x-sin2x=cos2x)三、解答題1、當a0時,當a0時,2、y=2(1-)+5cosx-1=-2,cosx-1,1,y-6,43、(1)奇函數(shù);(2)偶函數(shù)。4、解:y=-sin2x=-(sin2x+cos2x)=-sin(2x+)當2k-2x+2k+時,函數(shù)單調(diào)遞減, 函數(shù)單調(diào)遞減區(qū)間是k-,k+(kZ)當2k+2x+2k+時,函數(shù)單調(diào)遞增, 函數(shù)單調(diào)遞減區(qū)間是k+,k+(kZ)11

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!