數(shù)學(xué)分析試題及答案.doc

上傳人:good****022 文檔編號:116584409 上傳時間:2022-07-05 格式:DOC 頁數(shù):34 大小:707KB
收藏 版權(quán)申訴 舉報 下載
數(shù)學(xué)分析試題及答案.doc_第1頁
第1頁 / 共34頁
數(shù)學(xué)分析試題及答案.doc_第2頁
第2頁 / 共34頁
數(shù)學(xué)分析試題及答案.doc_第3頁
第3頁 / 共34頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《數(shù)學(xué)分析試題及答案.doc》由會員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)分析試題及答案.doc(34頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、WORD格式整理2014 -2015學(xué)年度第二學(xué)期數(shù)學(xué)分析2A試卷 學(xué)院 班級 學(xué)號(后兩位) 姓名 題號一二三四五六七八總分核分人得分一. 判斷題(每小題3分,共21分)(正確者后面括號內(nèi)打?qū)矗駝t打叉) 1.若在連續(xù),則在上的不定積分可表為( ). 2.若為連續(xù)函數(shù),則( ). 3. 若絕對收斂,條件收斂,則必然條件收斂( ). 4. 若收斂,則必有級數(shù)收斂( ) 5. 若與均在區(qū)間I上內(nèi)閉一致收斂,則也在區(qū)間I上內(nèi)閉一致收斂( ). 6. 若數(shù)項(xiàng)級數(shù)條件收斂,則一定可以經(jīng)過適當(dāng)?shù)闹嘏攀蛊浒l(fā)散于正無窮大( ). 7. 任何冪級數(shù)在其收斂區(qū)間上存在任意階導(dǎo)數(shù),并且逐項(xiàng)求導(dǎo)后得到的新冪級數(shù)收

2、斂半徑與收斂域與原冪級數(shù)相同( ).二. 單項(xiàng)選擇題(每小題3分,共15分)1.若在上可積,則下限函數(shù)在上( )A.不連續(xù) B. 連續(xù) C.可微 D.不能確定 2. 若在上可積,而在上僅有有限個點(diǎn)處與不相等,則( ) A. 在上一定不可積; B. 在上一定可積,但是; C. 在上一定可積,并且; D. 在上的可積性不能確定. 3.級數(shù) A.發(fā)散 B.絕對收斂 C.條件收斂 D. 不確定 4.設(shè)為任一項(xiàng)級數(shù),則下列說法正確的是( ) A.若,則級數(shù)一定收斂; B. 若,則級數(shù)一定收斂; C. 若,則級數(shù)一定收斂; D. 若,則級數(shù)一定發(fā)散; 5.關(guān)于冪級數(shù)的說法正確的是( ) A. 在收斂區(qū)間上

3、各點(diǎn)是絕對收斂的; B. 在收斂域上各點(diǎn)是絕對收斂的; C. 的和函數(shù)在收斂域上各點(diǎn)存在各階導(dǎo)數(shù); D. 在收斂域上是絕對并且一致收斂的;三.計算與求值(每小題5分,共10分) 1. 2. 四. 判斷斂散性(每小題5分,共15分) 1. 2. 3. 五. 判別在數(shù)集D上的一致收斂性(每小題5分,共10分) 1. 2. 六已知一圓柱體的的半徑為R,經(jīng)過圓柱下底圓直徑線并保持與底圓面 角向斜上方切割,求從圓柱體上切下的這塊立體的體積。(本題滿10分)七. 將一等腰三角形鐵板倒立豎直置于水中(即底邊在上),且上底邊距水表面距離為10米,已知三角形底邊長為20米,高為10米,求該三角形鐵板所受的靜壓力

4、。(本題滿分10分)八. 證明:函數(shù)在上連續(xù),且有連續(xù)的導(dǎo)函數(shù).(本題滿分9分) 2014 -2015學(xué)年度第二學(xué)期數(shù)學(xué)分析2B卷 答案 學(xué)院 班級 學(xué)號(后兩位) 姓名 題號一二三四五六七八總分核分人得分一、 判斷題(每小題3分,共21分,正確者括號內(nèi)打?qū)矗駝t打叉)1. 2. 3. 4. 5. 6. 7. 二.單項(xiàng)選擇題(每小題3分,共15分) 1. B ; 2.C ; 3.A ; 4.D; 5.B三.求值與計算題(每小題5分,共10分)1.解:由于-3分 而 -4分 故由數(shù)列極限的迫斂性得: -5分2. 設(shè) ,求解:令 得 =-2分= -4分=-5分四.判別斂散性(每小題5分,共10分

5、) 1. 解: -3分 且 ,由柯西判別法知, 瑕積分 收斂 -5分 2. 解: 有 -2分 從而 當(dāng) -4分 由比較判別法 收斂-5分五.判別在所示區(qū)間上的一致收斂性(每小題5分,共15分) 1. 解:極限函數(shù)為-2分 又 -3分 從而故知 該函數(shù)列在D上一致收斂. -5分2. 解:因當(dāng) 時,-2分而 正項(xiàng)級數(shù) 收斂, -4分由優(yōu)級數(shù)判別法知,該函數(shù)列在D上一致收斂.-5分3. 解:易知,級數(shù)的部分和序列一致有界,-2分而 對 是單調(diào)的,又由于,-4分所以在D上一致收斂于0,從而由狄利克雷判別法可知,該級數(shù)在D上一致收斂。-5分六. 設(shè)平面區(qū)域D是由圓,拋物線及x軸所圍第一象限部分,求由D繞

6、y軸旋轉(zhuǎn)一周而形成的旋轉(zhuǎn)體的體積(本題滿分10分)解:解方程組得圓與拋物線在第一象限的交點(diǎn)坐標(biāo)為:, -3分則所求旋轉(zhuǎn)體得體積為: -7分 =- = -10分七.現(xiàn)有一直徑與高均為10米的圓柱形鐵桶(厚度忽略不計),內(nèi)中盛滿水,求從中將水抽出需要做多少功?(本題滿分10分) 解:以圓柱上頂面圓圓心為原點(diǎn),豎直向下方向?yàn)閤軸正向建立直角坐標(biāo)系則分析可知做功微元為: -5分 故所求為: -8分 =1250 =12250(千焦)-10分八設(shè)是上的單調(diào)函數(shù),證明:若與都絕對收斂,則在上絕對且一致收斂. (本題滿分9分) 證明:是上的單調(diào)函數(shù),所以有 -4分又由與都絕對收斂,所以 收斂,-7分由優(yōu)級數(shù)判

7、別法知:在上絕對且一致收斂.-2013 -2014學(xué)年度第二學(xué)期數(shù)學(xué)分析2A試卷 學(xué)院 班級 學(xué)號(后兩位) 姓名 題號一二三四五六七總分核分人得分一. 判斷題(每小題2分,共16分)(正確者后面括號內(nèi)打?qū)?,否則打叉)1.若在a,b上可導(dǎo),則在a,b上可積. ( )2.若函數(shù)在a,b上有無窮多個間斷點(diǎn),則在a,b上必不可積。 ( )3.若均收斂,則一定條件收斂。 ( )4.若在區(qū)間I上內(nèi)閉一致收斂,則在區(qū)間I處處收斂( ) 5.若為正項(xiàng)級數(shù)(),且當(dāng) 時有: ,則級數(shù)必發(fā)散。( ) 6.若以為周期,且在上可積,則的傅里葉系數(shù)為: ( ) 7.若,則 ( ) 8.冪級數(shù)在其收斂區(qū)間上一定內(nèi)閉一

8、致收斂。( )二. 單項(xiàng)選擇題(每小題3分,共18分)1. 下列廣義積分中,收斂的積分是( )A B C D 2.級數(shù)收斂是部分和有界的( )A 必要條件 B 充分條件 C充分必要條件 D 無關(guān)條件 3.正項(xiàng)級數(shù)收斂的充要條件是( )A. B.數(shù)列單調(diào)有界 C. 部分和數(shù)列有上界 D. 4.設(shè)則冪級數(shù)的收斂半徑R=( ) A. B. C. D.5. 下列命題正確的是( )A 在絕對收斂必一致收斂B 在一致收斂必絕對收斂C 若,則在必絕對收斂D 在條件收斂必收斂6.若冪級數(shù)的收斂域?yàn)?則冪級數(shù)在上 A. 一致收斂 B. 絕對收斂 C. 連續(xù) D.可導(dǎo)三. 求值或計算(每題4分,共16分)1. ;

9、2. 3 .4.設(shè)在0,1上連續(xù),求四.(16分)判別下列反常積分和級數(shù)的斂散性. 1.; 2. 3. ; 4.五 、判別函數(shù)序列或函數(shù)項(xiàng)級數(shù)在所給范圍上的一致收斂性(每題5分,共10分)1. 2. ;六.應(yīng)用題型(14分)1. 一容器的內(nèi)表面為由繞y軸旋轉(zhuǎn)而形成的旋轉(zhuǎn)拋物面,其內(nèi)現(xiàn)有水(),若再加水7(),問水位升高了多少米? 2. 把由,x軸,y軸和直線所圍平面圖形繞x軸旋轉(zhuǎn)得一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的體積,并求滿足條件的. 七證明題型 (10分) 已知與均在a,b上連續(xù),且在a,b上恒有,但不恒等于,證明: 2013 -2014學(xué)年度第二學(xué)期數(shù)學(xué)分析2B試卷 學(xué)院 班級 學(xué)號(后兩位) 姓名

10、 題號一二三四五六七總分核分人得分一、 判斷題(每小題2分,共18分,正確者括號內(nèi)打?qū)?,否則打叉)1.對任何可導(dǎo)函數(shù)而言,成立。( )2.若函數(shù)在上連續(xù),則必為在上的原函數(shù)。( )3.若級數(shù)收斂,必有。( )4.若,則級數(shù)發(fā)散.5.若冪級數(shù)在處收斂,則其在-2,2上一致收斂.( )6.如果在以a,b為端點(diǎn)的閉區(qū)間上可積,則必有.( )7.設(shè)在上有定義,則與級數(shù)同斂散.( )8.設(shè)在任子區(qū)間可積,b為的暇點(diǎn),則與同斂散.( )9.設(shè)在上一致收斂,且存在,則.二.單項(xiàng)選擇題(每小題3分,共15分)1. 函數(shù)在上可積的必要條件是( )A 連續(xù) B 有界 C 無間斷點(diǎn) D 有原函數(shù)2. 下列說法正確

11、的是( )A. 和收斂,也收斂 B. 和發(fā)散,發(fā)散C. 收斂和發(fā)散,發(fā)散D. 收斂和發(fā)散,發(fā)散3. 在收斂于,且可導(dǎo),則( ) A. B. 可導(dǎo) C. D. 一致收斂,則必連續(xù) 4.級數(shù) A.發(fā)散 B.絕對收斂 C.條件收斂 D. 不確定5.冪級數(shù)的收斂域?yàn)椋?A.(-0.5,0.5) B.-0.5,0.5 C. D.三.求值與計算題(每小題4分,共16分)1. 2. 3. 4.四.判別斂散性(每小題4分,共16分)1.;2.3.4.五.判別在所示區(qū)間上的一致收斂性(每小題5分,共10分) 1. 2. 六.應(yīng)用題型(16分) 1.試求由曲線及曲線所平面圖形的面積. 2.將表達(dá)為級數(shù)形式,并確定

12、前多少項(xiàng)的和作為其近似,可使之誤差不超過十萬分之一.7. (9分)證明:若函數(shù)項(xiàng)級數(shù)滿足:() ;()收斂.則函數(shù)項(xiàng)級數(shù)在D上一致收斂.014 -2015學(xué)年度第二學(xué)期數(shù)學(xué)分析2A卷答案 三. 判斷題(每小題3分,共21分)1. 2. 3. 4. 5. 6. 7. 二.單項(xiàng)選擇題(每小題3分,共15分) B, C, C, D, A三.計算與求值( 每小題5分,共10分) 1. 解:原式= =-2分 =-3分 =-5分 2.原式= -2分 = -4分 = -5分四. 判斷斂散性( 每小題5分,共15分) 1. -2分且 -3分 由柯西判別法知,收斂。-5分 2.由比式判別法 -4分 故該級數(shù)收斂

13、. -5分 3. 解:由萊布尼茲判別法知,交錯級數(shù)收斂-2分 又 知其單調(diào)且有界,-4分故由阿貝爾判別法知,級數(shù)收斂. -5分五.1. 解:極限函數(shù)為 -2分 又 -4分 故知 該函數(shù)列在D上一致收斂.-5分 2. 解:因當(dāng) 時,-3分而 正項(xiàng)級數(shù) 收斂, -4分由優(yōu)級數(shù)判別法知,該函數(shù)列在D上一致收斂.-5分六已知一圓柱體的的半徑為R,由圓柱下底圓直徑線并保持與底圓面 角向斜上方切割,求所切下這塊立體的體積。(本題滿分10分) 解:在底圓面上以所截直徑線為x軸,底圓的圓心為原點(diǎn)示坐標(biāo)系, 過x處用垂直x軸的平面取截該立體,所得直角三角形的面積為: -5分 故所求立體的體積為: -7分 = -

14、10分七.解:建立圖示坐標(biāo)系(豎直方向?yàn)閤軸) 則第一象限等腰邊的方程為 -3分 壓力微元為: 故所求為 -7分 -10分八. 證明:每一項(xiàng)在上連續(xù), 又 而收斂 所以在上一致收斂,-3分故由定理結(jié)論知 在上連續(xù),-5分再者 而收斂所以在上一致收斂,結(jié)合在上的連續(xù)性可知在上有連續(xù)的導(dǎo)函數(shù). -9分 2014 -2015學(xué)年度第二學(xué)期數(shù)學(xué)分析2B試卷 學(xué)院 班級 學(xué)號(后兩位) 姓名 題號一二三四五六七八總分核分人得分二、 判斷題(每小題3分,共21分,正確者括號內(nèi)打?qū)?,否則打叉)1.若為偶函數(shù),則必為奇函數(shù)( ).2.為符號函數(shù),則上限函數(shù)y=在上連續(xù)( ).3.若收斂,必有( ).4.若在

15、區(qū)間I上內(nèi)閉一致收斂,則在區(qū)間I上處處收斂( ).5.若在上內(nèi)閉一致收斂,則在上一致收斂( ).6.若數(shù)項(xiàng)級數(shù)絕對收斂,則經(jīng)過任意重拍后得到的新級數(shù)仍然絕對收斂,并且其和不變( ).7.若函數(shù)項(xiàng)級數(shù)在上的某點(diǎn)收斂,且在上一致收斂,則也在上一致收斂( ).二.單項(xiàng)選擇題(每小題3分,共15分) 1. 函數(shù)是奇函數(shù),且在上可積,則( )A B C D 2.關(guān)于積分,正確的說法是( ) A.此為普通積分 B. 此為瑕積分且瑕點(diǎn)為0 C. 此為瑕積分且瑕點(diǎn)為1 D. 此為瑕積分且瑕點(diǎn)為0,13.就級數(shù)()的斂散性而言,它是( ) A. 收斂的 B. 發(fā)散的 C. 僅 時收 D. 僅 時收斂 4.函數(shù)列

16、在區(qū)間上一致收斂于0的充要條件是( ) A. B. C. D. 5.冪級數(shù)的收斂域?yàn)椋?A.(-0.5,0.5) B.-0.5,0.5 C. D.三.求值與計算題(每小題5分,共10分)1.2. 設(shè) ,求四.判別斂散性(每小題5分,共10分) 1. 2. 五.判別在所示區(qū)間上的一致收斂性(每小題5分,共15分) 1. 2. 3. 六. 設(shè)平面區(qū)域D是由圓,拋物線及x軸所圍第一象限部分,求由D繞y軸旋轉(zhuǎn)一周而形成的旋轉(zhuǎn)體的體積(本題滿分10分)七.現(xiàn)有一直徑與高均為10米的圓柱形鐵桶(厚度忽略不計),內(nèi)中盛滿水,求從中將水抽出需要做多少功?(本題滿分10分)八設(shè)是上的單調(diào)函數(shù),證明:若與 都絕對收斂,則在上絕對且一致收斂. (本題滿分9分) 專業(yè)資料 值得擁有

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!