《2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 統(tǒng)計(jì)與統(tǒng)計(jì)案例 第2講 用樣本估計(jì)總體分層演練 理(含解析)新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 統(tǒng)計(jì)與統(tǒng)計(jì)案例 第2講 用樣本估計(jì)總體分層演練 理(含解析)新人教A版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第2講 用樣本估計(jì)總體
1.把樣本容量為20的數(shù)據(jù)分組,分組區(qū)間與頻數(shù)如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70],2,則在區(qū)間[10,50)上的數(shù)據(jù)的頻率是( )
A.0.05 B.0.25
C.0.5 D.0.7
解析:選D.由題知,在區(qū)間[10,50)上的數(shù)據(jù)的頻數(shù)是2+3+4+5=14,故其頻率為=0.7.
2.(2019·廣西三市第一次聯(lián)考)在如圖所示一組數(shù)據(jù)的莖葉圖中,有一個(gè)數(shù)字被污染后模糊不清,但曾計(jì)算得該組數(shù)據(jù)的極差與中位數(shù)之和為61,則被污染的數(shù)字為( )
2、
A.1 B.2
C.3 D.4
解析:選B.由題圖可知該組數(shù)據(jù)的極差為48-20=28,則該組數(shù)據(jù)的中位數(shù)為61-28=33,易得被污染的數(shù)字為2.
3.(2019·岳陽(yáng)模擬)某商場(chǎng)在國(guó)慶黃金周的促銷(xiāo)活動(dòng)中,對(duì)10月2日9時(shí)到14時(shí)的銷(xiāo)售額進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,已知9時(shí)至10時(shí)的銷(xiāo)售額為2.5萬(wàn)元,則11時(shí)到12時(shí)的銷(xiāo)售額為( )
A.6萬(wàn)元 B.8萬(wàn)元
C.10萬(wàn)元 D.12萬(wàn)元
解析:選C.設(shè)11時(shí)到12時(shí)的銷(xiāo)售額為x萬(wàn)元,依題意有=,解得x=10.
4.(2018·高考全國(guó)卷Ⅰ)某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,
3、實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:
則下面結(jié)論中不正確的是( )
A.新農(nóng)村建設(shè)后,種植收入減少
B.新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C.新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
解析:選A.法一:設(shè)建設(shè)前經(jīng)濟(jì)收入為a,則建設(shè)后經(jīng)濟(jì)收入為2a,則由餅圖可得建設(shè)前種植收入為0.6a,其他收入為0.04a,養(yǎng)殖收入為0.3a.建設(shè)后種植收入為0.74a,其他收入為0.1a,養(yǎng)殖收入為0.6a,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和為1.16a,
4、所以新農(nóng)村建設(shè)后,種植收入減少是錯(cuò)誤的.故選A.
法二:因?yàn)?.6<0.37×2,所以新農(nóng)村建設(shè)后,種植收入增加,而不是減少,所以A是錯(cuò)誤的.故選A.
5.某人5次上班途中所花的時(shí)間(單位:分鐘)分別為x,y,10,11,9.已知這組數(shù)據(jù)的平均數(shù)為10,方差為2,則|x-y|的值為( )
A.1 B.2
C.3 D.4
解析:選D.由題意這組數(shù)據(jù)的平均數(shù)為10,方差為2,可得:x+y=20,(x-10)2+(y-10)2=8,
設(shè)x=10+t,y=10-t,由(x-10)2+(y-10)2=8,得t2=4,所以|x-y|=2|t|=4.
6.(2019·湖南省五市十校聯(lián)
5、考)某中學(xué)奧數(shù)培訓(xùn)班共有14人,分為兩個(gè)小組,在一次階段測(cè)試中兩個(gè)小組成績(jī)的莖葉圖如圖所示,其中甲組學(xué)生成績(jī)的平均數(shù)是88,乙組學(xué)生成績(jī)的中位數(shù)是89,則n-m的值是________.
解析:由甲組學(xué)生成績(jī)的平均數(shù)是88,可得
=88,解得m=3.由乙組學(xué)生成績(jī)的中位數(shù)是89,可得n=9,所以n-m=6.
答案:6
7.為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)有300名員工參加環(huán)保知識(shí)測(cè)試,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.現(xiàn)在要從第1,3,4組中用分層抽樣的方法抽取
6、16人,則在第4組中抽取的人數(shù)為_(kāi)_______.
解析:根據(jù)頻率分布直方圖得,第1,3,4組的頻率之比為1∶4∶3,所以用分層抽樣的方法抽取16人時(shí),在第4組中應(yīng)抽取的人數(shù)為16×=6.
答案:6
8.(2019·成都市第二次診斷性檢測(cè))在一個(gè)容量為5的樣本中,數(shù)據(jù)均為整數(shù),已測(cè)出其平均數(shù)為10,但墨水污損了兩個(gè)數(shù)據(jù),其中一個(gè)數(shù)據(jù)的十位數(shù)字1未被污損,即9,10,11,1 ,那么這組數(shù)據(jù)的方差s2可能的最大值是________.
解析:由題意可設(shè)兩個(gè)被污損的數(shù)據(jù)分別為10+a,b,(a,b∈Z,0≤a≤9),則10+a+b+9+10+11=50,即a+b=10,b=10-a
7、,所以s2=[(9-10)2+(10-10)2+(11-10)2+(10+a-10)2+(b-10)2]=[2+a2+(b-10)2]=(1+a2)≤×(1+92)=32.8.
答案:32.8
9.某校1 200名高三年級(jí)學(xué)生參加了一次數(shù)學(xué)測(cè)驗(yàn)(滿分為100分),為了分析這次數(shù)學(xué)測(cè)驗(yàn)的成績(jī),從這1 200人的數(shù)學(xué)成績(jī)中隨機(jī)抽取200人的成績(jī)繪制成如下的統(tǒng)計(jì)表,請(qǐng)根據(jù)表中提供的信息解決下列問(wèn)題:
成績(jī)分組
頻數(shù)
頻率
平均分
[0,20)
3
0.015
16
[20,40)
a
b
32.1
[40,60)
25
0.125
55
[60,80)
c
8、0.5
74
[80,100]
62
0.31
88
(1)求a、b、c的值;
(2)如果從這1 200名學(xué)生中隨機(jī)抽取一人,試估計(jì)這名學(xué)生該次數(shù)學(xué)測(cè)驗(yàn)及格的概率P(注:60分及60分以上為及格);
(3)試估計(jì)這次數(shù)學(xué)測(cè)驗(yàn)的年級(jí)平均分.
解:(1)由題意可得,b=1-(0.015+0.125+0.5+0.31)=0.05,a=200×0.05=10,c=200×0.5=100.
(2)根據(jù)已知,在抽出的200人的數(shù)學(xué)成績(jī)中,及格的有162人.所以P===0.81.
(3)這次數(shù)學(xué)測(cè)驗(yàn)樣本的平均分為
==73,
所以這次數(shù)學(xué)測(cè)驗(yàn)的年級(jí)平均分大約為73分.
10.(2
9、017·高考北京卷)某大學(xué)藝術(shù)專(zhuān)業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
解:(1)根據(jù)頻率分布直方圖可知,樣本中分?jǐn)?shù)不小于70的頻率為(
10、0.02+0.04)×10=0.6,
所以樣本中分?jǐn)?shù)小于70的頻率為1-0.6=0.4.
所以從總體的400名學(xué)生中隨機(jī)抽取一人,其分?jǐn)?shù)小于70的概率估計(jì)為0.4.
(2)根據(jù)題意,樣本中分?jǐn)?shù)不小于50的頻率為
(0.01+0.02+0.04+0.02)×10=0.9,
分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù)為100-100×0.9-5=5.
所以總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù)估計(jì)為400×=20.
(3)由題意可知,樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù)為
(0.02+0.04)×10×100=60,
所以樣本中分?jǐn)?shù)不小于70的男生人數(shù)為60×=30.
所以樣本中的男生人數(shù)為3
11、0×2=60,女生人數(shù)為100-60=40,男生和女生人數(shù)的比例為60∶40=3∶2.
所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計(jì)為3∶2.
1.(2019·長(zhǎng)春模擬)某銷(xiāo)售公司為了解員工的月工資水平,從1 000位員工中隨機(jī)抽取100位員工進(jìn)行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計(jì)該公司員工的月平均工資;
(2)該公司的工資發(fā)放是以員工的營(yíng)銷(xiāo)水平為重要依據(jù)來(lái)確定的,一般認(rèn)為,工資低于4 500元的員工屬于學(xué)徒階段,沒(méi)有營(yíng)銷(xiāo)經(jīng)驗(yàn),若進(jìn)行營(yíng)銷(xiāo)將會(huì)失?。桓哂? 500元的員工屬于成熟員工,進(jìn)行營(yíng)銷(xiāo)將會(huì)成功.現(xiàn)將該樣本按照“學(xué)徒階段工資”“成熟員工工資”分成兩
12、層,進(jìn)行分層抽樣,從中抽出5人,在這5人中任選2人進(jìn)行營(yíng)銷(xiāo)活動(dòng).活動(dòng)中,每位員工若營(yíng)銷(xiāo)成功,將為公司賺得3萬(wàn)元,否則公司將損失1萬(wàn)元.試問(wèn)在此次比賽中公司收入多少萬(wàn)元的可能性最大?
解:(1)估計(jì)該公司員工的月平均工資為0.000 1×1 000×2 000+0.000 1×1 000×3 000+0.000 2×1 000×4 000+0.000 3×1 000×5 000+0.000 2×1 000×6 000+0.000 1×1 000×7 000=4 700(元).
(2)抽取比為=,
從工資在[1 500,4 500)內(nèi)的員工中抽出100×(0.1+0.1+0.2)×=2人,設(shè)
13、這兩位員工分別為1,2;從工資在[4 500,7 500]內(nèi)的員工中抽出100×(0.3+0.2+0.1)×=3人,設(shè)這三位員工分別為A,B,C.
從中任選2人,共有以下10種不同的等可能結(jié)果:(1,2),(1,A),(1,B),(1,C),(2,A),(2,B),(2,C),(A,B),(A,C),(B,C).
兩人營(yíng)銷(xiāo)都成功,公司收入6萬(wàn)元,有以下3種不同的等可能結(jié)果:(A,B),(A,C),(B,C),概率為;
其中一人營(yíng)銷(xiāo)成功,一人營(yíng)銷(xiāo)失敗,公司收入2萬(wàn)元,有以下6種不同的等可能結(jié)果:(1,A),(1,B),(1,C),(2,A),(2,B),(2,C),概率為=;
兩人營(yíng)銷(xiāo)都
14、失敗,公司收入-2萬(wàn)元,即損失2萬(wàn)元,有1種結(jié)果:(1,2),概率為.
因?yàn)?<,所以公司收入2萬(wàn)元的可能性最大.
2.(2019·河北三市第二次聯(lián)考)某高三畢業(yè)班甲、乙兩名同學(xué)在連續(xù)的8次數(shù)學(xué)周練中,統(tǒng)計(jì)解答題失分的莖葉圖如圖:
(1)比較這兩名同學(xué)8次周練解答題失分的平均數(shù)和方差的大小,并判斷哪位同學(xué)做解答題相對(duì)穩(wěn)定些;
(2)以上述數(shù)據(jù)統(tǒng)計(jì)甲、乙兩名同學(xué)失分超過(guò)15分的頻率作為概率,假設(shè)甲、乙兩名同學(xué)在同一次周練中失分多少互不影響,預(yù)測(cè)在接下來(lái)的2次周練中,甲、乙兩名同學(xué)失分均超過(guò)15分的次數(shù)X的分布列和均值.
解:(1) 甲 =(7+9+11+13+13+16+23+28
15、)=15,乙=(7+8+10+15+17+19+21+23)=15,
s=[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,
s=[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.
甲、乙兩名同學(xué)解答題失分的平均數(shù)相等;甲同學(xué)解答題失分的方差比乙同學(xué)解答題失分的方差大.所以乙同學(xué)做解答題相對(duì)穩(wěn)定些.
(2)根據(jù)統(tǒng)計(jì)結(jié)果,在一次周練中,甲和乙失分超過(guò)15分的概率分別為P1=,P2=,
兩人失分均超過(guò)15分的概率為P1P2=,
X的所有可能取值為0,1,2.依題意,X~B(2,),
P(X=k)=C()k()2-k,k=0,1,2,
則X的分布列為
X
0
1
2
P
X的均值E(X)=2×=.
7