《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 概率與統(tǒng)計(jì) 第1講 統(tǒng)計(jì)與統(tǒng)計(jì)案例練習(xí) 文 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 概率與統(tǒng)計(jì) 第1講 統(tǒng)計(jì)與統(tǒng)計(jì)案例練習(xí) 文 新人教A版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第1講 統(tǒng)計(jì)與統(tǒng)計(jì)案例
一、選擇題
1.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一1 000人、高二1 200人、高三n人中,抽取81人進(jìn)行問(wèn)卷調(diào)查.已知高二被抽取的人數(shù)為30,那么n=( )
A.860 B.720
C.1 020 D.1 040
解析:選D.根據(jù)分層抽樣方法,得×81=30,解得n=1 040.故選D.
2.(2019·高考全國(guó)卷Ⅱ)演講比賽共有9位評(píng)委分別給出某選手的原始評(píng)分,評(píng)定該選手的成績(jī)時(shí),從9個(gè)原始評(píng)分中去掉1個(gè)最高分、1個(gè)最低分,得到7個(gè)有效評(píng)分.7個(gè)有效評(píng)分與9個(gè)原始評(píng)分相比,不變的數(shù)字特征是( )
A.中位
2、數(shù) B.平均數(shù)
C.方差 D.極差
解析:選A.記9個(gè)原始評(píng)分分別為a,b,c,d,e,f,g,h,i(按從小到大的順序排列),易知e為7個(gè)有效評(píng)分與9個(gè)原始評(píng)分的中位數(shù),故不變的數(shù)字特征是中位數(shù),故選A.
3.(2019·高考全國(guó)卷Ⅲ)《西游記》《三國(guó)演義》《水滸傳》和《紅樓夢(mèng)》是中國(guó)古典文學(xué)瑰寶,并稱為中國(guó)古典小說(shuō)四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機(jī)調(diào)查了100位學(xué)生,其中閱讀過(guò)《西游記》或《紅樓夢(mèng)》的學(xué)生共有90位,閱讀過(guò)《紅樓夢(mèng)》的學(xué)生共有80位,閱讀過(guò)《西游記》且閱讀過(guò)《紅樓夢(mèng)》的學(xué)生共有60位,則該校閱讀過(guò)《西游記》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)
3、值為( )
A.0.5 B.0.6
C.0.7 D.0.8
解析:選C.根據(jù)題意閱讀過(guò)《紅樓夢(mèng)》《西游記》的人數(shù)用Venn圖表示如下:
所以該校閱讀過(guò)《西游記》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)值為=0.7.
4.(2019·武漢市調(diào)研測(cè)試)某學(xué)校為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,了解到上學(xué)方式主要有:A—結(jié)伴步行,B—自行乘車,C—家人接送,D—其他方式.并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,求本次抽查的學(xué)生中A類人數(shù)是( )
A.30 B.40
C.42 D.48
解析:選A.由條形統(tǒng)計(jì)圖知,B—
4、自行乘車上學(xué)的有42人,C—家人接送上學(xué)的有30人,D—其他方式上學(xué)的有18人,采用B,C,D三種方式上學(xué)的共90人,設(shè)A—結(jié)伴步行上學(xué)的有x人,由扇形統(tǒng)計(jì)圖知,A—結(jié)伴步行上學(xué)與B—自行乘車上學(xué)的學(xué)生占60%,所以=,解得x=30,故選A.
5.為了研究某班學(xué)生的腳長(zhǎng)x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測(cè)量數(shù)據(jù)的散點(diǎn)圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為=x+,已知 x i=255, y i=1 600,=4.該班某學(xué)生的腳長(zhǎng)為24,據(jù)此估計(jì)其身高為( )
A.160 B.163
C.166 D.170
解析:選C.由
5、題意可知=4x+,又=22.5,=160,因此160=22.5×4+,所以=70,因此=4x+70.當(dāng)x=24時(shí),=4×24+70=96+70=166.
6.(2019·鄭州市第二次質(zhì)量預(yù)測(cè))將甲、乙兩個(gè)籃球隊(duì)各5場(chǎng)比賽的得分?jǐn)?shù)據(jù)整理成如圖所示的莖葉圖,由圖可知以下結(jié)論正確的是( )
A.甲隊(duì)平均得分高于乙隊(duì)的平均得分
B.甲隊(duì)得分的中位數(shù)大于乙隊(duì)得分的中位數(shù)
C.甲隊(duì)得分的方差大于乙隊(duì)得分的方差
D.甲、乙兩隊(duì)得分的極差相等
解析:選C.由題中莖葉圖得,甲隊(duì)的平均得分甲==29,乙隊(duì)的平均得分乙==30,甲<乙,選項(xiàng)A不正確;甲隊(duì)得分的中位數(shù)為29,乙隊(duì)得分的中位數(shù)為30,
6、甲隊(duì)得分的中位數(shù)小于乙隊(duì)得分的中位數(shù),選項(xiàng)B不正確;甲隊(duì)得分的方差s=×[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=,乙隊(duì)得分的方差s=×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,s>s,選項(xiàng)C正確;甲隊(duì)得分的極差為31-26=5,乙隊(duì)得分的極差為32-28=4,兩者不相等,選項(xiàng)D不正確.故選C.
二、填空題
7.某校高三(2)班現(xiàn)有64名學(xué)生,隨機(jī)編號(hào)為0,1,2,…,63,依編號(hào)順序平均分成8組,組號(hào)依次為1,2,3,…,8.現(xiàn)用系統(tǒng)抽樣方法抽取一個(gè)容量為8的樣本,若在第1組中隨機(jī)
7、抽取的號(hào)碼為5,則在第6組中抽取的號(hào)碼為________.
解析:依題意,分組間隔為=8,因?yàn)樵诘?組中隨機(jī)抽取的號(hào)碼為5,所以在第6組中抽取的號(hào)碼為5+5×8=45.
答案:45
8.為了解學(xué)生在課外活動(dòng)方面的支出情況,抽取了n個(gè)同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些學(xué)生的支出金額(單位:元)都在[10,50],其中支出金額在[30,50]的學(xué)生有117人,頻率分布直方圖如圖所示,則n=________.
解析:[30,50]對(duì)應(yīng)的頻率為1-(0.01+0.025)×10=0.65,所以n==180.
答案:180
9.某新聞媒體為了了解觀眾對(duì)央視《開門大吉》節(jié)目的喜愛與性別是否有關(guān)系,
8、隨機(jī)調(diào)查了觀看該節(jié)目的觀眾110名,得到如下的列聯(lián)表:
女
男
總計(jì)
喜愛
40
20
60
不喜愛
20
30
50
總計(jì)
60
50
110
試根據(jù)樣本估計(jì)總體的思想,估計(jì)在犯錯(cuò)誤的概率不超過(guò)________的前提下(約有________的把握)認(rèn)為“喜愛該節(jié)目與否和性別有關(guān)”.
參考附表:
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828
(參考公式:K2=,其中n=a+b+c+d)
解析:假設(shè)喜愛該節(jié)目和性別無(wú)關(guān),分析列聯(lián)表中數(shù)據(jù),可得K2的觀測(cè)值k=≈7.822>6.63
9、5,所以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下(約有99%的把握)認(rèn)為“喜愛該節(jié)目與否和性別有關(guān)”.
答案:0.01 99%
三、解答題
10.(2019·高考全國(guó)卷Ⅲ)為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成A,B兩組,每組100只,其中A組小鼠給服甲離子溶液,B組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記C為事件:“乙離子殘留在體內(nèi)的百分比不低于5.5”,根據(jù)直方圖得到P(C)的估計(jì)值為0.70.
(1)求乙離子殘留百分比直
10、方圖中a,b的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
解:(1)由已知得0.70=a+0.20+0.15,故
a=0.35.
b=1-0.05-0.15-0.70=0.10.
(2)甲離子殘留百分比的平均值的估計(jì)值為
2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.
乙離子殘留百分比的平均值的估計(jì)值為
3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.
11.(2019·鄭州市第一次質(zhì)量預(yù)測(cè))疫苗關(guān)系人民群眾健康,關(guān)系公共衛(wèi)生安全和國(guó)
11、家安全,因此,疫苗行業(yè)在生產(chǎn)、運(yùn)輸、儲(chǔ)存、使用等任何一個(gè)環(huán)節(jié)都容不得半點(diǎn)瑕疵.國(guó)家規(guī)定,疫苗在上市前必須經(jīng)過(guò)嚴(yán)格的檢測(cè),并通過(guò)臨床試驗(yàn)獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品研究所將某一型號(hào)疫苗用在小白鼠身上進(jìn)行科研和臨床試驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
未感染病毒
感染病毒
總計(jì)
未注射疫苗
40
p
x
注射疫苗
60
q
y
總計(jì)
100
100
200
現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.
(1)求2×2列聯(lián)表中p,q,x,y的值;
(2)能否有99.9%的把握認(rèn)為注射此種疫苗有效?
附:K2=,n=a+
12、b+c+d.
P(K2≥k0)
0.05
0.01
0.005
0.001
k0
3.841
6.635
7.879
10.828
解:(1)由=,得p=60,所以q=40,x=100,y=100.
(2)由K2=,
得K2==8<10.828,
所以沒有99.9%的把握認(rèn)為注射此種疫苗有效.
12.(2019·長(zhǎng)沙市統(tǒng)一模擬考試)某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近6個(gè)月廣告投入量x(單位:萬(wàn)元)和收益y(單位:萬(wàn)元)的數(shù)據(jù)如下表:
月份
1
2
3
4
5
6
廣告投入量
/萬(wàn)元
2
4
6
8
10
13、12
收益/萬(wàn)元
14.21
20.31
31.8
31.18
37.83
44.67
他們用兩種模型①y=bx+a,②y=aebx分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
xiyi
x
7
30
1 464.24
364
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由;
(2)殘差絕對(duì)值大于2的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(i)剔除異常數(shù)據(jù)后,求出(1)中所選模型的回歸方程;
(ii)廣告投入量x=18時(shí),(1)中所選模型收益的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù)(x
14、1,y1),(x2,y2),…,(xn,yn),其回歸直線=x+的斜率和截距的最小二乘估計(jì)分別為:==,=-.
解:(1)應(yīng)該選擇模型①,因?yàn)槟P廷俚臍埐铧c(diǎn)比較均勻地落在水平的帶狀區(qū)域中,且模型①的帶狀區(qū)域比模型②的帶狀區(qū)域窄,所以模型①的擬合精度高,回歸方程的預(yù)報(bào)精度高.
(2)(i)剔除異常數(shù)據(jù),即3月份的數(shù)據(jù)后,得
=×(7×6-6)=7.2,
=×(30×6-31.8)=29.64.
xiyi=1 464.24-6×31.8=1 273.44,
x=364-62=328.
====3,
=-=29.64-3×7.2=8.04.
所以y關(guān)于x的回歸方程為=3x+8.04.
(ii)把x=18代入(i)中所求回歸方程得=3×18+8.04=62.04,故預(yù)報(bào)值為62.04萬(wàn)元.
- 7 -