2020版高考數(shù)學(xué)復(fù)習(xí) 第十三單元 第64講 坐標(biāo)系練習(xí) 理 新人教A版

上傳人:Sc****h 文檔編號:120727994 上傳時(shí)間:2022-07-18 格式:DOCX 頁數(shù):5 大?。?.44MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)復(fù)習(xí) 第十三單元 第64講 坐標(biāo)系練習(xí) 理 新人教A版_第1頁
第1頁 / 共5頁
2020版高考數(shù)學(xué)復(fù)習(xí) 第十三單元 第64講 坐標(biāo)系練習(xí) 理 新人教A版_第2頁
第2頁 / 共5頁
2020版高考數(shù)學(xué)復(fù)習(xí) 第十三單元 第64講 坐標(biāo)系練習(xí) 理 新人教A版_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)復(fù)習(xí) 第十三單元 第64講 坐標(biāo)系練習(xí) 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)復(fù)習(xí) 第十三單元 第64講 坐標(biāo)系練習(xí) 理 新人教A版(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、第64講 坐標(biāo)系 1.[2018·烏蘭察布集寧一中月考] 在極坐標(biāo)系中,求點(diǎn)2,π6到直線ρsinθ-π6=1的距離. 2.在極坐標(biāo)系中,已知圓C經(jīng)過點(diǎn)P2,π4,圓心為直線ρsinθ-π3=-32與極軸的交點(diǎn),求圓C的極坐標(biāo)方程. 3.[2018·福建質(zhì)檢] 在平面直角坐標(biāo)系xOy中,曲線C1的直角坐標(biāo)方程為(x-2)2+y2=4,在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:θ=π6(ρ>0),A(2,0). (1)將C1的直角坐標(biāo)方程化為極坐標(biāo)方程; (2)設(shè)C3分別交C1,C2于點(diǎn)P

2、,Q,求△APQ的面積. 4.[2018·南昌模擬] 在平面直角坐標(biāo)系xOy中,圓C1:x2+y2=1經(jīng)過伸縮變換x'=2x,y'=3y后得到曲線C2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(2cosθ+3sinθ)=9. (1)求曲線C2和直線l的直角坐標(biāo)方程; (2)設(shè)點(diǎn)M是曲線C2上的一個(gè)動點(diǎn),求點(diǎn)M到直線l的距離的最大值. 5.[2018·齊齊哈爾模擬] 在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=sinθ+cosθ,

3、點(diǎn)P在曲線C上運(yùn)動. (1)若點(diǎn)Q在射線OP上,且|OP|·|OQ|=4,求點(diǎn)Q的軌跡的直角坐標(biāo)方程; (2)設(shè)M4,3π4,求△MOP面積的最大值. 6.[2018·黑龍江五校聯(lián)考] 在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系.已知曲線C1的極坐標(biāo)方程為ρ=22sinθ+π4,曲線C2的極坐標(biāo)方程為ρsinθ=a(a>0),射線θ=φ,θ=φ+π4,θ=φ-π4,θ=φ+π2與曲線C1分別交異于極點(diǎn)O的四點(diǎn)A,B,C,D. (1)若曲線C1關(guān)于曲線C2對稱,求a的值,并求曲線C1和C2的直角坐標(biāo)方程; (2)求|OA|·

4、|OC|+|OB|·|OD|的值. 7.在極坐標(biāo)系中,曲線C1,C2的極坐標(biāo)方程分別為ρ=-2cosθ,ρcosθ+π3=1. (1)求曲線C1和C2的公共點(diǎn)的個(gè)數(shù); (2)過極點(diǎn)作動直線與曲線C2相交于點(diǎn)Q,在射線OQ上取一點(diǎn)P,使|OP|·|OQ|=2,求點(diǎn)P的軌跡方程,并指出點(diǎn)P的軌跡是什么圖形. 8.[2018·貴陽模擬] 在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的極坐標(biāo)方程為ρcos2θ=sinθ. (1)求曲線C2的直角坐標(biāo)方程; (2)過

5、原點(diǎn)且傾斜角為απ6<α≤π4的射線l與曲線C1,C2分別相交于A,B兩點(diǎn)(A,B異于原點(diǎn)),求|OA|·|OB|的取值范圍. 課時(shí)作業(yè)(六十四) 1.解:以極點(diǎn)為原點(diǎn),以極軸為x軸的正半軸建立平面直角坐標(biāo)系. 點(diǎn)2,π6的直角坐標(biāo)為2cosπ6,2sinπ6,即(3,1). 又直線ρsinθ-π6=1可化為32ρsinθ-12ρcosθ=1,所以直線的直角坐標(biāo)方程為x-3y+2=0,由點(diǎn)到直線的距離公式得d=1,所以點(diǎn)2,π6到直線ρsinθ-π6=1的距離為1. 2.解:在ρsinθ-π3=-32中,令θ=0,得ρ=1, 所以圓C的圓心的極坐標(biāo)為(1,0). 因?yàn)閳AC經(jīng)過點(diǎn)P

6、2,π4, 所以圓C的半徑|PC|=(2)2+12-2×1×2cosπ4=1,所以圓C的直角坐標(biāo)方程為(x-1)2+y2=1,即x2+y2-2x=0,所以圓C的極坐標(biāo)方程為ρ2-2ρcosθ=0,即ρ=2cosθ. 3.解:(1)因?yàn)镃1的直角坐標(biāo)方程為(x-2)2+y2=4, 即x2+y2-4x=0, 所以C1的極坐標(biāo)方程為ρ2-4ρcosθ=0,即ρ=4cosθ. (2)設(shè)點(diǎn)P,Q的極坐標(biāo)分別為ρ1,π6,ρ2,π6. 將θ=π6代入ρ=4cosθ,得ρ1=23, 將θ=π6代入ρ=2sinθ,得ρ2=1, 所以|PQ|=|ρ1-ρ2|=23-1. 依題意得,點(diǎn)A(2,0

7、)到曲線θ=π6(ρ>0)的距離 d=|OA|sinπ6=1, 所以S△APQ=12|PQ|·d=12×(23-1)×1=3-12. 4.解:(1)由x2+y2=1經(jīng)過伸縮變換x'=2x,y'=3y,可得曲線C2的方程為x'22+y'32=1,即x24+y23=1. 由極坐標(biāo)方程ρ(2cosθ+3sinθ)=9可得直線l的直角坐標(biāo)方程為2x+3y-9=0. (2)由(1)可知,曲線C2的參數(shù)方程為x=2cosα,y=3sinα(α為參數(shù)),所以可設(shè)點(diǎn)M(2cosα,3sinα).由點(diǎn)到直線的距離公式,得點(diǎn)M到直線l的距離d=|4cosα+3sinα-9|7=|5sin(α+φ)-9|

8、7其中sinφ=45,cosφ=35,由三角函數(shù)的性質(zhì)知,當(dāng)α+φ=3π2時(shí),點(diǎn)M到直線l的距離有最大值27. 5.解:(1)設(shè)P(ρ,θ),Q(ρ1,θ),ρ>0,ρ1>0,則ρ=sinθ+cosθ. 又∵|OP|·|OQ|=4,∴ρρ1=4,∴ρ=4ρ1,∴4ρ1=sinθ+cosθ,即ρ1cosθ+ρ1sinθ=4. 由互化公式可得點(diǎn)Q的軌跡的直角坐標(biāo)方程為x+y=4. (2)設(shè)P(ρ,θ)(ρ>0),則ρ=cosθ+sinθ. ∵M(jìn)4,3π4,∴△MOP的面積S=12×4ρ·sin3π4-θ=2ρ·22cosθ+22sinθ=2(cosθ+sinθ)2=2(1+sin2θ)≤

9、22,當(dāng)且僅當(dāng)sin2θ=1,即θ=π4時(shí)等號成立, ∴△MOP面積的最大值為22. 6.解:(1)由題意知,C1的極坐標(biāo)方程可轉(zhuǎn)化為ρ2=22ρ22sinθ+22cosθ=2ρsinθ+2ρcosθ,化為直角坐標(biāo)方程為(x-1)2+(y-1)2=2. 將C2的極坐標(biāo)方程化為直角坐標(biāo)方程為y=a. 因?yàn)榍€C1關(guān)于曲線C2對稱,所以直線y=a經(jīng)過圓心(1,1),解得a=1,故C2的直角坐標(biāo)方程為y=1. (2)由題意可得,|OA|=22sinφ+π4,|OB|=22sinφ+π2=22cosφ,|OC|=22sinφ,|OD|=22cosφ+π4, 所以|OA|·|OC|+|OB|

10、·|OD|=8sinφ+π4sinφ+8cosπ4+φcosφ=8cosπ4=8×22=42. 7.解:(1)由題意知,C1的直角坐標(biāo)方程為(x+1)2+y2=1,它表示圓心為(-1,0),半徑為1的圓.C2的直角坐標(biāo)方程為x-3y-2=0,所以曲線C2為直線.由于圓心到直線的距離d=32>1,所以直線與圓相離,即曲線C1和C2的公共點(diǎn)個(gè)數(shù)為0. (2)設(shè)Q(ρ0,θ),P(ρ,θ),ρ>0,ρ0>0,則ρρ0=2,即ρ0=2ρ①, 因?yàn)辄c(diǎn)Q(ρ0,θ)在曲線C2上,所以ρ0cosθ+π3=1②, 將①代入②,得2ρcosθ+π3=1,即ρ=2cosθ+π3,點(diǎn)P的軌跡方程為ρ=2co

11、sθ+π3,化為直角坐標(biāo)方程是x-122+y+322=1, 所以點(diǎn)P的軌跡是以12,-32為圓心,1為半徑的圓(不包括原點(diǎn)). 8.解:(1)由曲線C2的極坐標(biāo)方程為ρcos2θ=sinθ, 兩邊同乘ρ,得ρ2cos2θ=ρsinθ, 故曲線C2的直角坐標(biāo)方程為x2=y. (2)由題可知,射線l的極坐標(biāo)方程為θ=α,π6<α≤π4, 把射線l的極坐標(biāo)方程代入曲線C1的極坐標(biāo)方程得|OA|=4cosα, 把射線l的極坐標(biāo)方程代入曲線C2的極坐標(biāo)方程得|OB|=sinαcos2α, ∴|OA|·|OB|=4cosα·sinαcos2α=4tanα. ∵π6<α≤π4,∴tanα∈33,1, ∴|OA|·|OB|的取值范圍是433,4. 5

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!