概率論 第三章第一節(jié).ppt

上傳人:tian****1990 文檔編號:13275263 上傳時間:2020-06-11 格式:PPT 頁數(shù):48 大?。?.18MB
收藏 版權(quán)申訴 舉報 下載
概率論 第三章第一節(jié).ppt_第1頁
第1頁 / 共48頁
概率論 第三章第一節(jié).ppt_第2頁
第2頁 / 共48頁
概率論 第三章第一節(jié).ppt_第3頁
第3頁 / 共48頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《概率論 第三章第一節(jié).ppt》由會員分享,可在線閱讀,更多相關(guān)《概率論 第三章第一節(jié).ppt(48頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、1,第三章多維隨機(jī)變量及其分布,1多維隨機(jī)變量的概念2隨機(jī)變量的獨(dú)立性3兩個隨機(jī)變量的函數(shù)的分布,2,從本講起,我們開始第三章的學(xué)習(xí).,一維隨機(jī)變量及其分布,,多維隨機(jī)變量及其分布,它是第二章內(nèi)容的推廣.,3,,到現(xiàn)在為止,我們只討論了一維r.v及其分布.但有些隨機(jī)現(xiàn)象用一個隨機(jī)變量來描述還不夠,而需要用幾個隨機(jī)變量來描述.,在打靶時,命中點(diǎn)的位置是由一對r.v(兩個坐標(biāo))來確定的.,飛機(jī)的重心在空中的位置是由三個r.v(三個坐標(biāo))來確定的等等.,4,設(shè),是定義在上的隨機(jī)變量,,由它們構(gòu)成的一個維向,量.,以下重點(diǎn)討論二維隨機(jī)變量.,5,第一節(jié)二維隨機(jī)變量,二維隨機(jī)變量及其分布函數(shù)二維離散型隨

2、機(jī)變量二維連續(xù)型隨機(jī)變量,6,如果對于任意實數(shù),二元函數(shù),稱為二維隨機(jī)變量的分布函數(shù),,定義1,一、二維隨機(jī)變量的分布函數(shù),7,而和都是隨機(jī)變量,,也有各自的分,布函數(shù),,分別記為,變量(X,Y)關(guān)于X和Y的邊緣分布函數(shù).,依次稱為二維隨機(jī),邊緣分布函數(shù),8,將二維隨機(jī)變量看成是平面上隨機(jī)點(diǎn)的坐標(biāo),,那么,分布函數(shù)在點(diǎn)處的函數(shù)值就是隨機(jī)點(diǎn)落在下面左圖所示的,以點(diǎn)為頂點(diǎn)而位于該點(diǎn)左下方的無窮矩形域內(nèi)的概率.,分布函數(shù)的函數(shù)值的幾何解釋,9,隨機(jī)點(diǎn)落在矩形域,內(nèi)的概率為,,,,,,10,分布函數(shù)具有以下的基本性質(zhì):,(1)F(x,y)是變量x,y的不減函數(shù),即對于任意固定的y,當(dāng)x1

3、于任意固定的y,,且,對于任意固定的x,當(dāng)y1

4、律.,,k=1,2,…,X的分布律,k=1,2,…,定義2,的值是有限對或可列無窮多對,,設(shè)二維離散型隨機(jī)變量,可能取的值是,記,如果二維隨機(jī)變量,全部可能取到的不相同,稱之為二維離散型隨機(jī)變量的分布律,,二、二維離散型隨機(jī)變量,14,也可用表格來表示隨機(jī)變量X和Y的聯(lián)合分布律.,15,例1把一枚均勻硬幣拋擲3次,設(shè)X為3次拋擲中正面出現(xiàn)的次數(shù),而Y為正面出現(xiàn)次數(shù)與反面出現(xiàn)次數(shù)之差的絕對值,求(X,Y)的分布律.,解(X,Y)可取值(0,3),(1,1),(2,1),(3,3),P{X=0,Y=3},P{X=1,Y=1},P{X=2,Y=1},P{X=3,Y=0},=3/8,=3/8,16,一

5、般地,對離散型r.v(X,Y),,則(X,Y)關(guān)于X的邊緣分布律為,X和Y的聯(lián)合分布律為,離散型隨機(jī)變量的邊緣分布律,17,(X,Y)關(guān)于Y的邊緣分布律為,18,例1(續(xù))把一枚均勻硬幣拋擲三次,設(shè)X為三次拋擲中正面出現(xiàn)的次數(shù),而Y為正面出現(xiàn)次數(shù)與反面出現(xiàn)次數(shù)之差的絕對值,求(X,Y)的分布律.,解(X,Y)可取值(0,3),(1,1),(2,1),(3,3),P{X=0,Y=3},P{X=1,Y=1},P{X=2,Y=1},P{X=3,Y=0},=3/8,=3/8,19,P{X=0}=,P{X=1}=,P{X=2}=,P{X=3}=,P{Y=1}=,P{Y=3}=,=1/8,,P{X=0,Y

6、=1}+P{X=0,Y=3},=3/8,,P{X=1,Y=1}+P{X=1,Y=3},=3/8,,P{X=2,Y=1}+P{X=2,Y=3},P{X=3,Y=1}+P{X=3,Y=3},=1/8.,=3/8+3/8=6/8,,=1/8+1/8=2/8.,20,我們常將邊緣分布律寫在聯(lián)合分布律表格的邊緣上,由此得出邊緣分布這個名詞.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,21,聯(lián)合分布與邊緣分布的關(guān)系,由聯(lián)合分布可以確定邊緣分布;,但由邊緣分布一般不能確定聯(lián)合分布.,22,,X的概率密度函數(shù),定義3,函數(shù)稱為二維,三、二維連續(xù)型隨機(jī)變量,23,二維連續(xù)型隨機(jī)

7、變量的概率密度具有性質(zhì),24,(X,Y)的概率密度的性質(zhì):,在f(x,y)的連續(xù)點(diǎn),,25,例2設(shè)(X,Y)的概率密度是,(1)求分布函數(shù),(2)求概率.,26,解(1),當(dāng)時,,故,當(dāng)時,,27,(2),28,例3.已知二維隨機(jī)變量(X,Y)的分布函數(shù)為,1)求常數(shù)A,B,C。2)求P{0

8、服從參數(shù)為的二維正態(tài)分布.,記作(X,Y)~N().,39,例6試求二維正態(tài)隨機(jī)變量的邊緣概率密度.,解,因為,所以,40,則有,41,二維正態(tài)分布的兩個邊緣分布都是一維正態(tài)分布,并且不依賴于參數(shù).,同理,可見,由邊緣分布一般不能確定聯(lián)合分布.,也就是說,對于給定的不同的對應(yīng),不同的二維正態(tài)分布,,但它們的邊緣分布卻都是一樣的.,此例表明,42,,五、小結(jié),在這一節(jié)中,我們與一維情形相對照,介紹了二維隨機(jī)變量的分布函數(shù),離散型隨機(jī)變量的分布律以及連續(xù)型隨機(jī)變量的概率密度函數(shù).二維隨機(jī)變量的邊緣分布函數(shù),離散型隨機(jī)變量的邊緣分布律以及連續(xù)型隨機(jī)變量的邊緣概率密度函數(shù).,作業(yè):P723,4,43,四、課堂練習(xí),44,,,解,,暫時固定,當(dāng)時,,當(dāng)時,,故,暫時固定,,45,暫時固定,,,,暫時固定,當(dāng)時,,當(dāng)時,,故,,46,四、課堂練習(xí),47,解(1),故,48,(2).,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!