塑料模具畢業(yè)設計外文翻譯附英文原文.doc
《塑料模具畢業(yè)設計外文翻譯附英文原文.doc》由會員分享,可在線閱讀,更多相關《塑料模具畢業(yè)設計外文翻譯附英文原文.doc(16頁珍藏版)》請在裝配圖網上搜索。
1、 長江大學工程技術學院 畢業(yè)設計(論文) 外文翻譯 外文題目 A technical note on the characterization of electroformed nickel shells for their application to injection molds 譯文題目 一個描述電鑄鎳殼在注塑模具的應用的技術研究 系部 機 械 系 專業(yè)班級 材控60901班 學生姓名 李小玲 指導教師 宋宏/高工 輔導教師 宋宏/高工 完成時間 2012年11月18日 一個描述電鑄鎳殼在注塑模具的應用
2、的技術研究 ——Universidad de Las Palmas de Gran Canaria, Departamento de Ingenieria Mecanica, Spain 摘要: 在過去幾年中快速成型技術及快速模具已被廣泛開發(fā)利用. 在本文中,使用電芯作為核心程序對塑料注射模具分析. 通過差分系統快速成型制造外殼模型. 主要目的是分析電鑄鎳殼力學特征、 研究相關金相組織,硬度,內部壓力等不同方面,由這些特征參數以生產電鑄設備的外殼. 最后一個核心是檢驗注塑模具. 關鍵詞:電鍍;電鑄;微觀結構;鎳 1. 引言
3、 現代工業(yè)遇到很大的挑戰(zhàn),其中最重要的是怎么樣提供更好的產品給消費者,更多種類和更新換代問題. 因此,現代工業(yè)必定產生更多的競爭性. 毫無疑問,結合時間變量和質量變量并不容易,因為他們經常彼此互為條件; 先進的生產系統將允許該組合以更加有效可行的方式進行,例如,如果是觀測注塑系統的轉變、 我們得出的結論是,事實上 一個新產品在市場上具有較好的質量它需要越來越少的時間 快速模具制造技術是在這一領域, 中可以改善設計和制造注入部分的技術進步. 快速模具制造技術基本上是一個中小型系列的收集程序,在很短的時間內在可接受的精度水平基礎上讓我們獲得模具的塑料部件。其應用不僅在更加廣闊而且生產也不斷增
4、多。 本文包括了很廣泛的研究路線,在這些研究路線中我們可以嘗試去學習,定義,分析,測試,提出在工業(yè)水平方面的可行性,從核心的注塑模具制造獲取電鑄鎳殼,同時作為一個初始模型的原型在一個FDM設備上的快速成型。 不得不說的是,先進的電鑄技術應用在無數的行業(yè),但這一研究工作調查到什么程度,并根據這些參數,使用這種技術生產快速模具在技術上是可行的. 都產生一個準確的,系統化使用的方法以及建議的工作方法. 2 制造過程的注塑模具 薄鎳外殼的核心是電鑄,獲得一個充滿epoxic金屬樹脂的一體化的核心板塊模具(圖1)允許直接制造注射型多用標本,因為它們確定了新英格蘭大學英文國際表卓
5、華組織3167標準。這樣做的目的是確定力學性能的材料收集代表行業(yè)。 該階段取得的核心[4],根據這一方法研究了這項工作,有如下: a,用CAD系統設計的理想對象 b模型制造的快速成型設備(頻分多路系統). 所用材料將是一個ABS塑料 c一個制造的電鑄鎳殼,已事先涂有導電涂料(必須有導電). d無外殼模型 e核心的生產是背面外殼環(huán)氧樹脂的抗高溫與具有制冷的銅管管道. 有兩個腔的注塑模具、 其中一個是電核心和其他直接加工的移動版. 因此,在同一工藝條件下,同時注入兩個標準技術制造,獲得相同的工作。 3 獲得電殼:設備 電鍍是電解質時電流的化學變化,電解所形成的
6、直流電有兩個電極,陽極和陰極。當電流流經電路,在離子溶液中轉化為原子。 電鍍液用于這項工作是由氨基磺酸鎳400 毫升/升,氯化鎳(10克/升)、硼酸(50克/升),allbrite SLA(30毫升/升),allbrite703(2毫升/升). 選擇這種組合主要原因是我們考慮注塑模具程序是玻璃纖維. 氨基磺酸鎳讓我們獲得可以接受的內部壓力(測試不同工藝條件結果,而不是最佳工藝條件約2兆帕最高為50兆帕). 不過,這種內部壓力是由touenesulfonamode衍生物和甲醛水溶液使用的ALLbrite添加劑的結果。 這種添加劑也增加了殼的阻力. Allbrite703是一種可生物降解水溶液
7、表使用劑 氯化鎳,有利于解決金屬統一分布在陰極,提高導電性的問題。硼酸作為PH值緩沖區(qū)。 該設備用于制造殼的測試如下: ● 聚丙烯:600毫米400毫米500毫米的尺寸 ● 三聚四氟乙烯電阻器,每一個有800W ● 具有機械攪拌系統的陰極 ●循環(huán)和過濾系統用的泵和聚丙烯過濾器。 ● 充電整流器. 最大強度在連續(xù)50個A和連續(xù)電流電壓介于0至16伏 ● 籃鈦鎳陽極(鎳硫回合電解鎳)純度99%以上 ● 氣體注入系統 一旦電流密度( 1-22A/dm),溫度(35至55℃)和pH值,已經確定,執(zhí)行參數以及測試的進程部分不可改變。 4 獲得硬度 電殼硬度的測試一直保持在相當高的很
8、穩(wěn)定的結果。如圖2,可以看到:電流密度值2.5到22A/dm,硬度值介于540到580高壓,PH值為4+-0.2和溫度為45攝氏度,如果PH減少到3.5和溫度為55攝氏度,硬度為520以上,高壓低于560.這一測試使常規(guī)組成不同于其他氨基磺酸鎳,允許其經營更加廣泛,然而,這種operatyivity將是一定的取決于其他因素,如內部壓力,因為他可能的變異。 改變PH值,電流密度和溫度等,另一方面,傳統的硬度氨基磺酸鎳承受的高壓在200-250之間,遠低于取得的一個實驗結果的電壓。對于一個注塑模具,硬度可以接受的起點300高壓這是必須考慮的,注塑模具中最常見的材料,有改善鋼(290高壓),整體淬
9、火(520-595高壓),casehardened鋼鐵(760-8--高壓)等,以這樣一種方式,可以看到,注塑模具硬度水平的鎳是殼內的高范圍的材料。因為這是一個負責內部壓力的塑料注射液,這種方式與環(huán)氧樹脂灌漿將遵循它,相反對低韌性的殼補償,這就是為什么它是必定盡可能的外殼厚度均勻,并沒有重要的原因,如 腐蝕。 5 金相組織 為了分析金相結構、電流密度、溫度主要變化. 在正面橫向部分(垂直沉積)對樣品進行了分析,為了方便地封裝在樹脂,拋光。銘刻,在不同階段的混合乙酸和硝酸。該時刻間隔15,25,40,50之后再次拋光, 為了在金相顯微鏡下觀察奧林巴斯PME3-ADL3.3X/10X
10、 必須要說的是,這一條規(guī)定顯示了圖片之后的評論,用于制造該模型的殼在FDM快速成型機里融化的塑料材料(澳大利亞統計局)鞏固和解決了該階層。后來在每一個層,擠出的模具都留下一個大約0.15毫米直徑橫向和縱向的線程。因此,在表面可以看到細線表面頭部的機器。這些西路將作為參考信息解決鎳的重復性問題。重復性的模型將作為一個基本要素來評估注塑模具的表面紋理。 表1測試系列: 表1. 檢驗系列 系列 pH 溫度(℃) 電流密度A/mm2 1 4.20.2 55 2.22 2 3.90.2 45 5.56 3 4.00.2 45 10.00 4 4
11、.00.2 45 22.22 圖3說明該系列第一時刻表面的樣本 它顯示了流道起點的頻率復用機,這就是說,又一個很好的重復性。它不能仍然要注意四舍五入結構。在圖4 系列2,經過第二次,可以看到一條線的流道的方式與以前的相比不太清楚。在圖5系列3雖然第二次時刻開始出現圓形晶結果是非常困難的。此外,最黑暗的部分表明時刻不足的進程和組成。 這種現象表明,在低電流密度和高溫條件下工作,得到更小的晶粒尺寸和殼重現性好,就是所需要的足夠的應用程序。 如果分析橫向平面進行的沉積,可以在所有測試樣品和條件增長的結構層(圖6),犧牲一個低延展性取得令人滿意的高機械阻力,最重要的是添加劑
12、的使用情況,氨基磺酸鎳液的添加劑通常創(chuàng)建一個纖維和非層狀結果[9].這個問題表明在任何情況下改變潤濕劑,由于該層結構的決定因素是這種結構的應力減速器(ALLbriteSLA)。另一方面,她也是測試的層狀結構不同厚度中的電流密度. 6 內部壓力 殼的一個主要特點是應該有其應用,如插入時要有一個低水平的內部壓力。測試不同的溫度很電流密度,所采取的措施取決于陰極彎曲張力計法。A鋼測試控制使用側固定和其他自由度固定(160毫米長,12.7毫米寬,0.3毫米厚)。金屬沉積只有在控制了機械拉伸力(拉深或壓應力),才能計算內部壓力。彈性的角度來看,斯托尼模型應用,假定鎳基質厚度
13、,對部分鋼材產生足夠小(3微米)的影響。在所有測試情況下,一個能夠接受的應用程序在內部壓力在50兆帕的極端條件下和2兆帕的最佳條件下產生。得出的結論是,內部壓力在不同的工作條件和參數沒有明顯的變化條件下。 7 校驗注塑模具 試驗已進行了各種代表性熱塑性材料如聚丙烯、高密度聚乙烯和PC、 并進行了注射部件性能的分析,如尺寸,重量,阻力,剛度和柔性。對殼的力學性能進行了拉伸破壞性測試和分析。大約500個注射液在其余的條件下,進行了更多的檢驗 總體而言, 為分析一種材料,重要的是注意到行為標本中的核心和那些加工腔之間的差異。然而在分析光彈注入標本(圖7)有人注意到不同的國家之間張力存在兩種不同
14、的類型的標本,是由于不同的模腔熱傳遞和剛度。這種差異解釋了柔性的變化更加突出的部分晶體材料,如聚乙烯和聚酰胺6. 有人注意到一個較低的柔性標本在的高密度聚乙烯分析測試管在鎳核心的情況下,量化30%左右。如尼龍6這個值也接近50%。 8 結論 經過連續(xù)的測試,注塑模具在不同條件下檢查的氨基磺酸鎳液使用添加劑。這就是說塑性好,硬度好和摩擦力好的層狀結構,已取得的力學性能是可以接受的。借鞋缺陷的鎳殼將部分取代環(huán)氧樹脂為核心的注塑模具,使注入的一系列中型塑料零部件達到可接受的質量的水平。 外 文 出 處:
15、 參考資料 [1] A.E.W. Rennie, C.E. Bocking and G.R. Bennet, Electroforming of rapid prototyping mandrels for electro discharge machining electrodes, J. Mater. Process. Technol. 110 (2001), pp. 186–196. [2] P.K.D.V. Yarlagadda, I.P. Ilyas and P. Chrstodoulou, Development of rapid tooling for sheet met
16、al drawing using nickel electroforming and stereo lithography processes, J. Mater. Process. Technol. 111 (2001), pp. 286–294. [3] J. Hart, A. Watson, Electroforming: A largely unrecognised but expanding vital industry, Interfinish 96, 14 World Congress, Birmingham, UK, 1996. [4] M. Monzn et al.,
17、 Aplicacin del electroconformado en la fabricacin rpida de moldes de inyeccin, Revista de Plsticos Modernos. 84 (2002), p. 557. [5] L.F. Hamilton et al., Clculos de Qumica Analtica, McGraw Hill (1989). [6] E. Julve, Electrodeposicin de metales, 2000 (E.J.S.). [7] A. Watson, Nickel Sulphamate S
18、olutions, Nickel Development Institute (1989). [8] A. Watson, Additions to Sulphamate Nickel Solutions, Nickel Development Institute (1989). [9] J. Dini, Electrodeposition Materials Science of Coating and Substrates, Noyes Publications (1993). [10] J.W. Judy, Magnetic microactuators with polys
19、ilicon flexures, Masters Report, Department of EECS, University of California, Berkeley, 1994. (cap′. 3). A technical note on the characterization of electroformed nickel shells for their application to injection molds ——aUniversidad de Las Palmas de Gran Canaria, Departamento
20、de Ingenieria Mecanica, Spain Abstract The techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for plastics injection molds is analysed. Shells are obtained from models manufactured th
21、rough rapid prototyping using the FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses and possible failures, by relating these features to the parameters
22、 of production of the shells with an electroforming equipment. Finally a core was tested in an injection mold. Keywords: Electroplating; Electroforming; Microstructure; Nickel 1. Introduction One of the most important challenges with which modern industry comes across is to offer the consumer
23、 better products with outstanding variety and time variability (new designs). For this reason, modern industry must be more and more competitive and it has to produce with acceptable costs. There is no doubt that combining the time variable and the quality variable is not easy because they frequentl
24、y condition one another; the technological advances in the productive systems are going to permit that combination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of plastics injection, we arrive at the conclusion that, in f
25、act, it takes less and less time to put a new product on the market and with higher levels of quality. The manufacturing technology of rapid tooling is, in this field, one of those technological advances that makes possible the improvements in the processes of designing and manufacturing injected pa
26、rts. Rapid tooling techniques are basically composed of a collection of procedures that are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their application is not only included in the field of making pla
27、stic injected pieces [1], [2] and [3], however, it is true that it is where they have developed more and where they find the highest output. This paper is included within a wider research line where it attempts to study, define, analyze, test and propose, at an industrial level, the possibility of
28、 creating cores for injection molds starting from obtaining electroformed nickel shells, taking as an initial model a prototype made in a FDM rapid prototyping equipment. It also would have to say beforehand that the electroforming technique is not something new because its applications in the ind
29、ustry are countless [3], but this research work has tried to investigate to what extent and under which parameters the use of this technique in the production of rapid molds is technically feasible. All made in an accurate and systematized way of use and proposing a working method. 2. Manufa
30、cturing process of an injection mold The core is formed by a thin nickel shell that is obtained through the electroforming process, and that is filled with an epoxic resin with metallic charge during the integration in the core plate [4] This mold (Fig. 1) permits the direct manufacturing by inject
31、ion of a type a multiple use specimen, as they are defined by the UNE-EN ISO 3167 standard. The purpose of this specimen is to determine the mechanical properties of a collection of materials representative industry, injected in these tools and its coMParison with the properties obtained by conventi
32、onal tools. Fig. 1.Manufactured injection mold with electroformed core. The stages to obtain a core [4], according to the methodology researched in this work, are the following: (a) Design in CAD system of the desired object. (b) Model manufacturing in a rapid prototyping equipment (FDM
33、system). The material used will be an ABS plastic. (c) Manufacturing of a nickel electroformed shell starting from the previous model that has been coated with a conductive paint beforehand (it must have electrical conductivity). (d) Removal of the shell from the model. (e) Production of the core
34、 by filling the back of the shell with epoxy resin resistant to high temperatures and with the refrigerating ducts made with copper tubes. The injection mold had two cavities, one of them was the electroformed core and the other was directly machined in the moving platen. Thus, it was obtained, wit
35、h the same tool and in the same process conditions, to inject simultaneously two specimens in cavities manufactured with different technologies. 3. Obtaining an electroformed shell: the equipment Electrodeposition [5] and [6] is an electrochemical process in which a chemical change has its origin
36、 within an electrolyte when passing an electric current through it. The electrolytic bath is formed by metal salts with two submerged electrodes, an anode (nickel) and a cathode (model), through which it is made to pass an intensity coming from a DC current. When the current flows through the circui
37、t, the metal ions present in the solution are transformed into atoms that are settled on the cathode creating a more or less uniform deposit layer. The plating bath used in this work is formed by nickel sulfamate [7] and [8] at a concentration of 400ml/l, nickel chloride (10g/l), boric acid (50g/l
38、), Allbrite SLA (30cc/l) and Allbrite 703 (2cc/l). The selection of this composition is mainly due to the type of application we intend, that is to say, injection molds, even when the injection is made with fibreglass. Nickel sulfamate allows us to obtain an acceptable level of internal stresses in
39、the shell (the tests gave results, for different process conditions, not superior to 50MPa and for optimum conditions around 2MPa). Nevertheless, such level of internal pressure is also a consequence of using as an additive Allbrite SLA, which is a stress reducer constituted by derivatives of toluen
40、esulfonamide and by formaldehyde in aqueous solution. Such additive also favours the increase of the resistance of the shell when permitting a smaller grain. Allbrite 703 is an aqueous solution of biodegradable surface-acting agents that has been utilized to reduce the risk of pitting. Nickel chlori
41、de, in spite of being harmful for the internal stresses, is added to enhance the conductivity of the solution and to favour the uniformity in the metallic distribution in the cathode. The boric acid acts as a pH buffer. The equipment used to manufacture the nickel shells tested has been as follows
42、: ? Polypropylene tank: 600mm400mm500mm in size. ? Three teflon resistors, each one with 800W. ? Mechanical stirring system of the cathode. ? System for recirculation and filtration of the bath formed by a pump and a polypropylene filter. ? Charging rectifier. Maximum intensity in continuous 5
43、0A and continuous current voltage between 0 and 16V. ? Titanium basket with nickel anodes (Inco S-Rounds Electrolytic Nickel) with a purity of 99%. ? Gases aspiration system. Once the bath has been defined, the operative parameters that have been altered for testing different conditions of the pr
44、ocess have been the current density (between 1 and 22A/dm2), the temperature (between 35 and 55C) and the pH, partially modifying the bath composition. 4. Obtained hardness One of the most interesting conclusions obtained during the tests has been that the level of hardness of the different elect
45、roformed shells has remained at rather high and stable values. In Fig. 2, it can be observed the way in which for current density values between 2.5 and 22A/dm2, the hardness values range from 540 and 580HV, at pH 40.2 and with a temperature of 45C. If the pH of the bath is reduced at 3.5 and the te
46、mperature is 55C those values are above 520HV and below 560HV. This feature makes the tested bath different from other conventional ones composed by nickel sulfamate, allowing to operate with a wider range of values; nevertheless, such operativity will be limited depending on other factors, such as
47、internal stress because its variability may condition the work at certain values of pH, current density or temperature. On the other hand, the hardness of a conventional sulfamate bath is between 200–250HV, much lower than the one obtained in the tests. It is necessary to take into account that, for
48、 an injection mold, the hardness is acceptable starting from 300HV. Among the most usual materials for injection molds it is possible to find steel for improvement (290HV), steel for integral hardening (520–595HV), casehardened steel (760–800HV), etc., in such a way that it can be observed that the
49、hardness levels of the nickel shells would be within the medium–high range of the materials for injection molds. The objection to the low ductility of the shell is compensated in such a way with the epoxy resin filling that would follow it because this is the one responsible for holding inwardly the
50、 pressure charges of the processes of plastics injection; this is the reason why it is necessary for the shell to have a thickness as homogeneous as possible (above a minimum value) and with absence of important failures such as pitting. Fig. 2.Hardness variation with current density. pH 40.2,
51、 T=45C. 5. Metallographic structure In order to analyze the metallographic structure, the values of current density and temperature were mainly modified. The samples were analyzed in frontal section and in transversal section (perpendicular to the deposition). For achieving a convenient preparat
52、ion, they were conveniently encapsulated in resin, polished and etched in different stages with a mixture of acetic acid and nitric acid. The etches are carried out at intervals of 15, 25, 40 and 50s, after being polished again, in order to be observed afterwards in a metallographic microscope Olymp
53、us PME3-ADL 3.3/10. Before going on to comment the photographs shown in this article, it is necessary to say that the models used to manufacture the shells were made in a FDM rapid prototyping machine where the molten plastic material (ABS), that later solidifies, is settled layer by layer. In eac
54、h layer, the extruder die leaves a thread approximately 0.15mm in diameter which is compacted horizontal and vertically with the thread settled inmediately after. Thus, in the surface it can be observed thin lines that indicate the roads followed by the head of the machine. These lines are going to
55、act as a reference to indicate the reproducibility level of the nickel settled. The reproducibility of the model is going to be a fundamental element to evaluate a basic aspect of injection molds: the surface texture. The tested series are indicated in Table 1. Table 1. Tested series Series
56、 pH Temperature (C) Current density (A/dm2) 1 4.20.2 55 2.22 2 3.90.2 45 5.56 3 4.00.2 45 10.00 4 4.00.2 45 22.22 Fig. 3 illustrates the surface of a sample of the series after the first etch. It shows the roads originated by the FDM machine, that is to say that ther
57、e is a good reproducibility. It cannot be still noticed the rounded grain structure. In Fig. 4, series 2, after a second etch, it can be observed a line of the road in a way less clear than in the previous case. In Fig. 5, series 3 and 2 etch it begins to appear the rounded grain structure although
58、it is very difficult to check the roads at this time. Besides, the most darkened areas indicate the presence of pitting by inadequate conditions of process and bath composition. Fig. 3.Series 1 (150), etch 1. Fig. 4.Series 2 (300), etch 2. Fig. 5.Series 3 (300), etch 2. This b
59、ehavior indicates that, working at a low current density and a high t matter demonstrated that the determinant for such structure was the stress reducer (Allbrite SLA). On the other hand, it was also tested that the laminar structure varies according to the thickness of the layer in terms of the cur
60、rent density. Fig. 6.Plane transversal of series 2 (600), etch 2. 6. Internal stresses One of the main characteristic that a shell should have for its application like an insert is to have a low level of internal stresses. Different tests at different bath temperatures and current densities were done and a measure system rested on cathode flexural tensiometer method was used. A steel testing control was used with a side fixed and the other free
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。