山東省2019中考數(shù)學 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt

上傳人:tian****1990 文檔編號:13663937 上傳時間:2020-06-23 格式:PPT 頁數(shù):54 大?。?.75MB
收藏 版權(quán)申訴 舉報 下載
山東省2019中考數(shù)學 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt_第1頁
第1頁 / 共54頁
山東省2019中考數(shù)學 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt_第2頁
第2頁 / 共54頁
山東省2019中考數(shù)學 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt_第3頁
第3頁 / 共54頁

下載文檔到電腦,查找使用更方便

14.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《山東省2019中考數(shù)學 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《山東省2019中考數(shù)學 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt(54頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、考點一 矩形的性質(zhì)與判定 (5年5考) 例1 如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是( ) A.AB=BE B.BE⊥DC C.∠ADB=90 D.CE⊥DE,【分析】 先證明四邊形BCDE為平行四邊形,再根據(jù)矩形的判定進行分析.,【自主解答】 ∵四邊形ABCD為平行四邊形,∴AD∥BC, AD=BC. 又∵AD=DE, ∴DE∥BC,且DE=BC, ∴四邊形BCED為平行四邊形. ∵AB=BE,DE=AD,∴BD⊥AE, ∴?DBCE為矩形,故A選項不符合題意;,∵對角線互相垂直的平行四邊形為菱形,

2、不一定為矩形, 故B選項符合題意; ∵∠ADB=90,∴∠EDB=90, ∴?DBCE為矩形,故C選項不符合題意; ∵CE⊥DE,∴∠CED=90, ∴?DBCE為矩形,故D選項不符合題意.故選B.,矩形的性質(zhì)應用及判定方法 (1)矩形性質(zhì)的應用:從邊上看,兩組對邊分別平行且相等;從角上看,矩形的四個角都是直角;從對角線上看,對角線互相平分且相等,同時把矩形分為四個面積相等的等腰三角形.,(2)矩形的判定方法:若四邊形可以證為平行四邊形,則 還需證明一個角是直角或?qū)蔷€相等;若直角較多,可利 用“三個角為直角的四邊形是矩形”來證.,1.(2018棗莊中考)如圖,在矩形ABCD中,點E是邊BC的

3、 中點,AE⊥BD,垂足為F,則tan∠BDE的值為( ),A,2.(2018濱州中考)如圖,在矩形ABCD中,AB=2,BC= 4,點E,F(xiàn)分別在BC,CD上,若AE= ,∠EAF=45,則 AF的長為 .,3.如圖,在?ABCD中,過點D作DE⊥AB于點E,點F在邊CD 上,DF=BE,連接AF,BF. (1)求證:四邊形BFDE是矩形; (2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.,(1)∵四邊形ABCD是平行四邊形, ∴DC∥AB,即DF∥BE. 又∵DF=BE,∴四邊形BFDE為平行四邊形. 又∵DE⊥AB,∴∠DEB=90, ∴四邊形BFDE為矩形.,(2)

4、∵四邊形BFDE為矩形,∴∠BFC=90. ∵CF=3,BF=4,∴BC= =5. ∵四邊形ABCD是平行四邊形,∴AD=BC=5, ∴AD=DF=5,∴∠DAF=∠DFA. 又∵DC∥AB,∴∠DFA=∠FAB, ∴∠DAF=∠FAB,即AF平分∠DAB.,考點二 菱形的性質(zhì)與判定 (5年3考) 例2 (2017濱州中考)如圖,在?ABCD中,以點A為圓心,AB 長為半徑畫弧交AD于點F;再分別以點B,F(xiàn)為圓心,大于 BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交 BC于點E,連接EF,則所得四邊形ABEF是菱形.,(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形; (

5、2)若菱形ABEF的周長為16,AE=4 ,求∠C的大?。?【分析】 (1)利用“鄰邊相等的平行四邊形是菱形”進行判定; (2)連接BF,利用菱形的性質(zhì),通過解直角三角形確定∠OAF的度數(shù),從而可知∠C的度數(shù).,【自主解答】(1)由作圖過程可知,AB=AF,AE平分∠BAD, ∴∠BAE=∠EAF. ∵四邊形ABCD為平行四邊形,∴BC∥AD, ∴∠AEB=∠EAF,∴∠BAE=∠AEB, ∴AB=BE,∴BE=AF, ∴四邊形ABEF為平行四邊形,∴四邊形ABEF為菱形.,(2)如圖,連接BF. ∵四邊形ABEF為菱形, ∴BF與AE互相垂直平分,∠BAE=∠FAE,,∵菱形ABEF的周長

6、為16,∴AF=4, ∴∠OAF=30,∴∠BAF=60. ∵四邊形ABCD為平行四邊形,∴∠C=∠BAD=60.,菱形的性質(zhì)應用及判定方法 (1)判定一個四邊形是菱形時,一是證明四條邊相等;二是先證明它是平行四邊形,進而再證明它是菱形. (2)運用菱形的性質(zhì)時,要注意菱形的對角線互相垂直這個條件;此外,菱形的對角線所在的直線是菱形的對稱軸,運用這一性質(zhì)可以求出線段和的最小值.,4.(2015濱州中考)順次連接矩形ABCD各邊的中點, 所得四邊形必定是( ) A.鄰邊不等的平行四邊形 B.矩形 C.正方形 D.菱形,D,5.(2018日照中考)如圖,在四邊形ABCD中,對角線AC, BD

7、相交于點O,AO=CO,BO=DO.添加下列條件,不能判定 四邊形ABCD是菱形的是( ) A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO,B,6.如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點, 過點A作BC的平行線交BE的延長線于點F,連接CF. (1)求證:AF=DC; (2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.,(1)證明:∵AF∥BC,∴∠AFE=∠DBE. ∵E是AD的中點,AD是BC邊上的中線, ∴AE=DE,BD=CD. 在△AFE和△DBE中, ∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.,(2)解

8、:四邊形ADCF是菱形. 證明如下:∵AF∥BC,AF=DC, ∴四邊形ADCF是平行四邊形. ∵AC⊥AB,AD是斜邊BC的中線,∴AD= BC=DC, ∴平行四邊形ADCF是菱形.,考點三 正方形的性質(zhì)與判定 (5年3考) 例3 (2014濱州中考)如圖,已知正方形ABCD,把邊DC繞D點順時針旋轉(zhuǎn)30到DC′處,連接AC′,BC′,CC′,寫出圖中所有的等腰三角形,并寫出推理過程.,【分析】 利用旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)以及全等三角形的性質(zhì)與判定得出相等的邊,從而得出圖中的等腰三角形. 【自主解答】圖中的等腰三角形有△DCC′,△DC′A,△C′AB,△C′BC. 推理過程:∵四邊形A

9、BCD是正方形, ∴AB=AD=DC,∠BAD=∠ADC=90, ∴DC=DC′=DA,,∴△DCC′,△DC′A為等腰三角形. ∵∠C′DC=30,∠ADC=90,∴∠ADC′=60, ∴△AC′D為等邊三角形, ∴AC′=AD=AB,∴△C′AB為等腰三角形. ∵∠C′AB=90-60=30,∴∠CDC′=∠C′AB,,在△DCC′和△ABC′中, ∴△DCC′≌△ABC′,∴CC′=C′B, ∴△C′BC為等腰三角形.,判定正方形的方法及其特殊性 (1)判定一個四邊形是正方形,可以先判定四邊形為矩形,再證鄰邊相等或者對角線互相垂直;或先判定四邊形為菱形,再證有一個角是直角或者對角線相等

10、. (2)正方形既是特殊的矩形,又是特殊的菱形,具有它們的所有性質(zhì).,7.(2018青島中考)已知正方形ABCD的邊長為5,點E,F(xiàn)分 別在AD,DC上,AE=DF=2,BE與AF相交于點G,點H為BF的 中點,連接GH,則GH的長為 .,8.已知:如圖,在正方形ABCD中,AB=4,點G是射線AB上的一個動點,以DG為邊向右作正方形DGEF,作EH⊥AB于點H.,(1)若點G在點B的右邊.試探索:EH-BG的值是否為定值,若是,請求出定值;若不是,請說明理由. (2)連接EB,在G點的整個運動(點G與點A重合除外)過程中,求∠EBH的度數(shù).,解:(1)EH-BG的值是定值. ∵EH⊥AB,

11、∴∠GHE=90,∴∠GEH+∠EGH=90. 又∵∠AGD+∠EGH=90,∴∠GEH=∠AGD. ∵四邊形ABCD與四邊形DGEF都是正方形, ∴∠DAG=90,DG=GE,∴∠DAG=∠GHE.,在△DAG和△GHE中, ∴△DAG≌△GHE(AAS),∴AG=EH. 又∵AG=AB+BG,AB=4,∴EH=AB+BG, ∴EH-BG=AB=4.,(2)①如圖1,當點G在點B的左側(cè)時, 同(1)可證得△DAG≌△GHE, ∴GH=DA=AB,EH=AG,∴BH=AG=EH. 又∵∠GHE=90,∴△BHE是等腰直角三角形, ∴∠EBH=45.,②如圖2,當點G在點B的右側(cè)時, 由△DA

12、G≌△GHE, ∴GH=DA=AB,EH=AG,∴AG=BH. 又∵EH=AG,∴EH=HB. 又∵∠GHE=90,∴△BHE是等腰直角三角形, ∴∠EBH=45.,③如圖3,當點G與點B重合時, 同理△DAG≌△GHE,∴GH=DA=AB,EH=AG=AB, ∴△GHE(即△BHE)是等腰直角三角形, ∴∠EBH=45. 綜上所述,在G點的整個運動(點G與點A重合除外)過程中,∠EBH都等于45.,考點四 四邊形綜合題 百變例題(2018棗莊中考改編)如圖,將矩形ABCD沿AF折 疊,使點D落在BC邊上的點E處,過點E作EG∥CD交AF于點G, 連接DG.,(1)求證:四邊形EFDG是菱形;

13、 (2)探究線段EG,GF,AF之間的數(shù)量關(guān)系,并說明理由; (3)若 求BE的長.,【分析】 (1)先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)證明∠DGF =∠DFG,從而得到GD=DF,再根據(jù)翻折的性質(zhì)即可證明DG =GE=DF=EF; (2)連接DE,交AF于點O.由菱形的性質(zhì)可知GF⊥DE,OG=OF = GF,然后證明△DOF∽△ADF,由相似三角形的性質(zhì)可 證明DF2=FOAF,于是可得到EG,AF,GF的數(shù)量關(guān)系;,(3)過點G作GH⊥DC,垂足為H.利用(2)的結(jié)論可求得FG,然后在△ADF中依據(jù)勾股定理可求得AD的長,然后再證明△FGH∽△FAD,利用相似三角

14、形的性質(zhì)可求得GH的長,最后依據(jù)BE=AD-GH求解即可.,【自主解答】 (1)∵GE∥DF,∴∠EGF=∠DFG. ∵由翻折的性質(zhì)可知GD=GE,DF=EF,∠DGF=∠EGF, ∴∠DGF=∠DFG,∴GD=DF, ∴DG=GE=DF=EF, ∴四邊形EFDG是菱形. ∵四邊形EFDG是菱形,,變式1:如圖,若點G在BE上,AD=10,AB=6,CE=2, 將△ABG沿AG折疊,點B恰好落在線段AE上的點H處.求證: (1)∠FAG=45; (2)S△ABG= S△EGH; (3)BG+CE=GE.,證明:如圖, 由題意可知,BG=GH,AE=AD=10,AH=AB=6, ∠1=∠2,∠3

15、=∠4. (1)∵∠1+∠2+∠3+∠4=∠BAD=90, ∴∠2+∠3= ∠BAD= 90=45, 即∠FAG=45.,(2)∵AE=10,AH=6,∴HE=AE-AH=10-6=4. 設BG=x,∴GH=BG=x, ∴GE=AD-BG-EC=10-x-2=8-x. 在Rt△GHE中, ∵GE2=GH2+HE2,∴(8-x)2=x2+42,∴x=3, 即GH=BG=3,,(3)∵GE=8-x=8-3=5,BG+EC=3+2=5, ∴BG+CE=GE.,變式2:如圖,矩形ABCD中,AD=10,AB=6,若點M是BC邊上一點,連接AM,把∠B沿AM折疊,使點B落在點B′處,當△CMB′為直角三

16、角形時,求BM的長.,解: 如圖,當點B′落在矩形內(nèi)部時,連接AC. 在Rt△ABC中,AB=6,BC=10, ∵∠B沿AM折疊,使點B落在點B′處, ∴∠AB′M=∠B=90.,當△CMB′為直角三角形時,只能得到∠MB′C=90, ∴點A,B′,C共線,即∠B沿AM折疊,使點B落在對角線 AC上的點B′處, ∴MB=MB′,AB=AB′=6,∴CB′=2 -6. 設BM=x,則MB′=x,CM=10-x,,在Rt△CMB′中, ∵MC2=MB′2+CB′2, (10-x)2=x2+(2 -6)2,,如圖,當點B′落在AD邊上時, 此時四邊形ABMB′為正方形,∴BM=AB=6. 綜上所述,BM的長為 或6.,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!