《(福建專(zhuān)用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 8.6 空間向量及其運(yùn)算課件 理 新人教A版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(福建專(zhuān)用)2019高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 立體幾何 8.6 空間向量及其運(yùn)算課件 理 新人教A版.ppt(31頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、8.6空間向量及其運(yùn)算,知識(shí)梳理,考點(diǎn)自測(cè),1.空間向量的有關(guān)概念 (1)空間向量:在空間中,具有和的量叫做空間向量,其大小叫做向量的或. (2)相等向量:方向且模的向量. (3)共線向量:如果表示空間向量的有向線段所在的直線_______或,則這些向量叫做或,a平行于b記作ab. (4)共面向量:平行于同一的向量叫做共面向量.,大小,方向,長(zhǎng)度,模,相同,相等,平行,重合,共線向量,平行向量,平面,知識(shí)梳理,考點(diǎn)自測(cè),2.空間向量的有關(guān)定理 (1)共線向量定理:對(duì)空間任意兩個(gè)向量a,b(b0),ab存在R,使a=b. (2)共面向量定理:若兩個(gè)向量a,b不共線,則向量p與向量a,b共面存在唯
2、一的有序?qū)崝?shù)對(duì)(x,y),使p=xa+yb. (3)空間向量基本定理:如果三個(gè)向量a,b,c不共面,那么對(duì)空間任一向量p,存在唯一的有序?qū)崝?shù)組x,y,z使得p=xa+yb+zc.其中a,b,c叫做空間的一個(gè)基底. 3.兩個(gè)向量的數(shù)量積 (1)ab=|a||b|cos. (2)ab (a,b為非零向量). (3)|a|2=.,ab=0,a2,知識(shí)梳理,考點(diǎn)自測(cè),4.空間向量的坐標(biāo)運(yùn)算 (1)設(shè)a=(a1,a2,a3),b=(b1,b2,b3),則 a+b=. a-b=. a=. ab=.,(a1+b1,a2+b2,a3+b3),(a1-b1,a2-b2,a3-b3),(a1,a2,a3),a1b
3、1+a2b2+a3b3,(x2-x1.y2-y1,z2-z1),知識(shí)梳理,考點(diǎn)自測(cè),知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,1.下列結(jié)論正確的畫(huà)“”,錯(cuò)誤的畫(huà)“”. (1)若A,B,C,D是空間任意四點(diǎn),則有 (2)|a|-|b|=|a+b|是a,b共線的充要條件.() (3)空間中任意兩非零向量a,b共面.() (4)對(duì)于空間非零向量a,b,abab=0.() (5)對(duì)于非零向量b,由ab=bc,得a=c.(),答案,知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,2.若x,yR,有下列命題: 若p=xa+yb,則p與a,b共面; 若p與a,b共面,則p=xa+yb; 其中真命題的個(gè)數(shù)是() A.1
4、B.2C.3D.4,答案,解析,知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,3.已知向量a=(+1,0,2),b=(6,2-1,2),若ab,則與的值可以是() C.-3,2D.2,2,答案,解析,知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,4.若向量a=(2,-2,-2),b=(2,0,4),則a與b的夾角的余弦值為(),答案,解析,知識(shí)梳理,考點(diǎn)自測(cè),2,3,4,1,5,5.如圖,在一個(gè)60的二面角的棱上,有兩個(gè)點(diǎn)A,B,AC,BD分別是在這個(gè)二面角的兩個(gè)半平面內(nèi)垂直于AB的線段,且AB=4,AC=6,BD=8,則CD的長(zhǎng)為.,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考
5、點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考空間向量的線性運(yùn)算與平面向量的線性運(yùn)算有什么區(qū)別與聯(lián)系? 解題心得1.選定空間不共面的三個(gè)向量作基向量,并用它們表示出指定的向量,這是用向量解決立體幾何問(wèn)題的基本要求,另外解題時(shí)應(yīng)結(jié)合已知和所求,觀察圖形,聯(lián)想相關(guān)的運(yùn)算法則和公式等,就近表示所需向量. 2.空間向量問(wèn)題可以轉(zhuǎn)化為平面向量問(wèn)題來(lái)解決,即把空間向量轉(zhuǎn)化到某一個(gè)平面上,利用三角形法則或平行四邊形法則來(lái)解決.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對(duì)點(diǎn)訓(xùn)練1在三棱錐O-ABC中,M,N分別是OA,BC的中點(diǎn),G是ABC的重心,用基向量,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考
6、點(diǎn)4,例2已知E,F,G,H分別是空間四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),用向量方法證明: (1)E,F,G,H四點(diǎn)共面; (2)BD平面EFGH.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考共線定理、共面定理有哪些應(yīng)用?,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對(duì)點(diǎn)訓(xùn)練2如圖,已知斜三棱柱ABC-A1B1C1,點(diǎn)M,N分別在AC1和BC上,且滿足 (2)直線MN是否與平面ABB1A1平行?,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,例3已知向量a=(1,2,3),b=(-2,-4,-6),|c|= ,若(a+b)c=7,則a與c的夾角為() A.30B.60C
7、.120D.150,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考空間向量用空間直角坐標(biāo)系的坐標(biāo)表示的主要用途有哪些? 解題心得空間向量的坐標(biāo)表示主要應(yīng)用于向量平行、向量垂直、向量的模、向量的夾角,在研究幾何問(wèn)題中只要建立適當(dāng)?shù)淖鴺?biāo)系,把空間幾何體中涉及的直線和平面用向量表示,就可以使得幾何證明通過(guò)代數(shù)運(yùn)算得到解決,這是使用空間向量研究立體幾何問(wèn)題的基本思想.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對(duì)點(diǎn)訓(xùn)練3(2017廣東中山模擬)已知向量a,b滿足條件: |a|=2,|b|= ,且a與2b-a互相垂直,則a與b的夾角為.,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,例4如圖所示,在平行六面體A
8、BCD-A1B1C1D1中,以頂點(diǎn)A為端點(diǎn)的三條棱長(zhǎng)都為1,且兩兩夾角為60. (1)求AC1的長(zhǎng); (2)求證:AC1BD; (3)求BD1與AC夾角的余弦值.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考空間向量的數(shù)量積主要有哪些應(yīng)用? 解題心得空間向量數(shù)量積的應(yīng)用 (1)求夾角.設(shè)向量a,b所成的角為,則 ,進(jìn)而可求兩異面直線所成的角. (2)求長(zhǎng)度(距離).運(yùn)用公式|a|2=aa,可使線段長(zhǎng)度的計(jì)算問(wèn)題轉(zhuǎn)化為向量數(shù)量積的計(jì)算問(wèn)題. (3)解決垂直問(wèn)題.利用abab=0(a0,b0),可將垂直問(wèn)題轉(zhuǎn)化為向量數(shù)量積的計(jì)算問(wèn)題.
9、,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對(duì)點(diǎn)訓(xùn)練4如圖,四棱錐P-ABCD的底面ABCD為直角梯形,ADBC,BAD=90,PA底面ABCD,且PA=AD=AB=1. (1)若BC=3,求異面直線PC與BD所成角的余弦值; (2)若BC=2,求證:平面BPC平面PCD.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,1.利用向量的線性運(yùn)算和空間向量基本定理表示向量是向量應(yīng)用的基礎(chǔ). 2.利用共線向量定理、共面向量定理可以證明一些平行、共面問(wèn)題;利用數(shù)量積運(yùn)算可以解決一些距離、夾角問(wèn)題. 3.利用向量解立體幾何題的一般方法:把線段或角度轉(zhuǎn)化為用向量表示,用已知向量表示未知向量,然后通過(guò)向量的運(yùn)算或證明去解決問(wèn)題.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,1.向量的數(shù)量積滿足交換律、分配律,但不滿足結(jié)合律,即ab=ba,a(b+c)=ab+ac成立,(ab)c=a(bc)不一定成立. 3.求異面直線所成的角,一般可以轉(zhuǎn)化為兩向量的夾角,但要注意兩種角的范圍不同,最后應(yīng)進(jìn)行轉(zhuǎn)化.,