自伴邊值問題4學(xué)時(shí).ppt

上傳人:za****8 文檔編號(hào):16598300 上傳時(shí)間:2020-10-18 格式:PPT 頁(yè)數(shù):26 大?。?72KB
收藏 版權(quán)申訴 舉報(bào) 下載
自伴邊值問題4學(xué)時(shí).ppt_第1頁(yè)
第1頁(yè) / 共26頁(yè)
自伴邊值問題4學(xué)時(shí).ppt_第2頁(yè)
第2頁(yè) / 共26頁(yè)
自伴邊值問題4學(xué)時(shí).ppt_第3頁(yè)
第3頁(yè) / 共26頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《自伴邊值問題4學(xué)時(shí).ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《自伴邊值問題4學(xué)時(shí).ppt(26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、自伴邊值問題 目錄 2.1 邊值問題 2.2 Sturn-Lieuville邊值問題 2.3 Posson邊值問題 2.4 Helmholtz邊值問題 2.5 Fredholm邊值問題 2.1 邊值問題 邊值問題是描述物理量隨 空間 和 時(shí)間 的變化 規(guī)律。對(duì)于某一特定的區(qū)域和時(shí)刻,方程的解取 決于物理量的 控制方程 、 初始值 與 邊界值 ,這些 初始值和邊界值分別稱為 初始條件 和 邊界條件 , 兩者又統(tǒng)稱為該方程的 定解條件 。根據(jù)給定的邊 界條件求解空間任一點(diǎn)的電位就是靜電場(chǎng)的 邊值 問題 。 已知場(chǎng)域邊界 上各點(diǎn)值 自然 邊界條件 參考點(diǎn)電位

2、 有限值 rrlim 邊值問題 微分方程 邊界條件 場(chǎng)域 邊界條件 分界面 銜接條件 第一類 邊界條件 第二類 邊界條件 第三類 邊界條件 已知場(chǎng)域邊界 上各點(diǎn)的法向?qū)?shù) 一、二類邊界 條件的線性組 合, nn 2 2 1 1 21 馬氏方程或波動(dòng)方程 通常給定的邊界條件有三種類型: 第二類邊界條件是給定邊界上物理量的法向?qū)?shù)值, 這種邊值問題又稱為 諾依曼 問題。 第三類邊界條件是給定一部分邊界上的物理量及另一 部分邊界上物理量的法向?qū)?shù)值,這種邊界條件又稱為 混 合 邊界條件。 第一類邊界條件給定的是邊界上的物理量,這種

3、邊值 問題又稱為 狄利克雷 問題。 對(duì)于任何數(shù)學(xué)物理方程需要研究解的存在 、 穩(wěn)定及惟一性問題 。 由于實(shí)際中定解條件是由實(shí)驗(yàn)得到的 , 不可能取得精確的 真值 , 因此 , 解的穩(wěn)定性具有重要的實(shí)際意義 。 解的 惟一性 是指在給定的定解條件下所求得的解是否惟一 。 解的 穩(wěn)定性 是指當(dāng)定解條件發(fā)生微小變化時(shí) , 所求得的解 是否會(huì)發(fā)生很大的變化 。 解的 存在 是指在給定的定解條件下 , 方程是否有解 。 場(chǎng)是客觀存在的 , 因此 Maxwell方程解的存在確信無(wú)疑 。 邊值問題的求解 分離變量法 行波法等 保角變換法 0 ( , , , , )

4、 0 0 0 0 ( , , , 0 ) Sv S v S v F U x y z t UU UU nn U x y z U 控制方 程 其次邊 界條件 初始條 件 2.2 Sturn-Lieuville邊值問題 1 1 1 1 2 2 2 2 ( ) ( ) ( ) ( ) 0 ( ) 0 , ( ) 0 , dd p x q x U x f x dx dx d Ux dx d Ux dx 不同時(shí)為零 不同時(shí)為零 控制方 程 邊界條 件 f(x) 已知,成為 確定性邊值問題 , 當(dāng) f(x)=kr(x)U(

5、x), 其中 r(x)已知, U(?。┪粗?稱為 廣義特征值問題 , 當(dāng) r(x)==1時(shí)退化為 一般特 征值問題 ( ) ( )ddp x q xd x d x A ( ) ( )U x f xA 1. A 是線性連續(xù)算子 2. A 是對(duì)稱算子 3. A 自伴算子 4. 滿足一定條件后,可以是正定算子 2.3 Posson邊值問題 2 2 () ( ) 0d U x fx dx 當(dāng)上式中的 p(x)=0, q(x)=0時(shí), 方程退化為 Poisson方程 一般情況下 222 2 2 2 2 ( ) ( ) ( ) ( ) 0 ( ) ( ) d U x d U x d

6、 U x fx dx dy dy that is U x f x 同樣可以證明, Poisson方程也是 線性 、 連續(xù)、對(duì)稱、自伴算子 ,滿足條件的正定 算子 方程 Helmholtz邊值問題 2 2 2 () ( ) ( ) 0d U x k U x f x dx 當(dāng)上式中的 p(x)=0, q(x)=k2時(shí), 方程退化為一維 Helmholtz方程 222 2 2 2 2 22 ( ) ( ) ( ) ( ) ( ) 0 ( ) ( ) ( ) d U x d U x d U x k U x f x dx dy dy that is U x k U x f x

7、 仍然是線性連續(xù)算子, 當(dāng) k2 0時(shí)是下有界算子,所以仍然是自伴邊值問題 1-D 2-D 3-D 22( ) ( ) 0 ( ) ( ) 0bb k u r n u r j n u r 矢量場(chǎng) 矢量邊 界條件 可以證明,也是 Lagrange意義下的 自伴算子 ,而且正定 格林定理 設(shè)任意兩個(gè)標(biāo)量場(chǎng) 及 ,若在區(qū)域 V 中具有連續(xù)的二階偏導(dǎo)數(shù), 如下圖示。 S V , ne 那么 , 可以證明該兩個(gè)標(biāo)量場(chǎng) 及 滿足下列等式 SV SnV 2 dd)( 式中 S 為包圍 V 的閉合曲面, 為標(biāo)量 場(chǎng)

8、在 S 表面的外法線 en 方向上的偏 導(dǎo)數(shù)。 n 略 ddVSVS AA 2 2.5 Fredholm邊值問題 根據(jù)方向?qū)?shù)與梯度的關(guān)系,上式又可寫成 SV V 2 d)(d)( S 上兩式稱為 標(biāo)量第一格林定理 。 SV SnnV 22 dd)( SV V 22 d d)( S 基于上式還可獲得下列兩式: 上兩式稱為 標(biāo)量第二格林定理 。 設(shè)任意兩個(gè)矢量場(chǎng) P 與 Q , 若在區(qū)域 V 中具有連續(xù)的二階偏導(dǎo)數(shù) , 那么 , 可以證明該矢量場(chǎng) P 及 Q 滿足下列等式 SV V d d)()(

9、 SQPQPQP 式中 S 為包圍 V 的閉合曲面,面元 dS 的方向?yàn)?S 的外法線方向,上式稱 為 矢量第一格林定理 。 基于上式還可獲得下式: SV V dd()( SPQQPQPPQ 此式稱為 矢量第二格林定理 。 無(wú)論何種格林定理 , 都是說明 區(qū)域 V 中的場(chǎng)與 邊界 S 上的場(chǎng)之間的 關(guān)系 。 因此 , 利用格林定理可以將區(qū)域中場(chǎng)的求解問題轉(zhuǎn)變?yōu)檫吔缟蠄?chǎng) 的求解問題 。 此外,格林定理說明了 兩種 標(biāo)量場(chǎng)或矢量場(chǎng)之間應(yīng)該滿足的關(guān)系。 因此,如果已知其中一種場(chǎng)的分布特性,即可利用格林定理求解另一種 場(chǎng)的分布特性。 格林定理廣泛地用于電磁理論。 矩

10、量法的基礎(chǔ) 以上均是已知電磁場(chǎng)源分布,求解場(chǎng)的邊值問題 當(dāng)需要求解源的分布問題,就必須求解 Fredholm 邊值問題 ( | ) ( ) ( ) v G r r U r d v f r 該算子方程具有 Lagrange意義下的自伴特 性,而且一定是正定的 一、 確定性問題 二、 標(biāo)量特征值問題 ( | ) ( ) ( ) v G r r U r d v U r 該算子方程具有 Lagrange意義下的自伴特 性,而且一定是正定的 三、 矢量特征值問題 ( | ) ( ) ( ) v G r r U r dv U r 該算子方程具有 Lagrange意義下

11、的自伴特 性,而且一定是正定的 并矢格 林函數(shù) 并矢格林函數(shù) Green function= linear mapping from scalar source to scalar field or scalar potential Dyadic Green function=linear mapping from vector source to vector field ( | ) ( ) ( ) v x x x y x z y x y y y z z x z y z z G r r J r d v H r G G G G G G G G G G x x

12、 x y x z y x y y y z zx zy zz x x x x y y x z z y x x y y y y z z zx x zy y zz z G G G G G G G G G G G J G J G J H G J G J G J G J G J G J G J 表示在一般情況下,磁場(chǎng)某一個(gè)方向分量的大小與電 源三個(gè)方向的大小都有關(guān) 線性 連續(xù) 對(duì)稱 自伴 正定 S-L方程 Poisson方程 Helmholtz 標(biāo)量定解問題 Helmholtz 矢量定解問題 Helmholtz 標(biāo)量特征值問題 Helmholtz 矢量特征值問題 Fredholm標(biāo)量確定性問題 Fredholm標(biāo)量特征值問題 Fredholm矢量特征值問題

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!