2022-2023學(xué)年廣東省深圳市高二數(shù)學(xué)下學(xué)期期末模擬試卷【含答案】

上傳人:精*** 文檔編號:221033486 上傳時間:2023-07-04 格式:DOCX 頁數(shù):18 大?。?71.04KB
收藏 版權(quán)申訴 舉報 下載
2022-2023學(xué)年廣東省深圳市高二數(shù)學(xué)下學(xué)期期末模擬試卷【含答案】_第1頁
第1頁 / 共18頁
2022-2023學(xué)年廣東省深圳市高二數(shù)學(xué)下學(xué)期期末模擬試卷【含答案】_第2頁
第2頁 / 共18頁
2022-2023學(xué)年廣東省深圳市高二數(shù)學(xué)下學(xué)期期末模擬試卷【含答案】_第3頁
第3頁 / 共18頁

下載文檔到電腦,查找使用更方便

6 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022-2023學(xué)年廣東省深圳市高二數(shù)學(xué)下學(xué)期期末模擬試卷【含答案】》由會員分享,可在線閱讀,更多相關(guān)《2022-2023學(xué)年廣東省深圳市高二數(shù)學(xué)下學(xué)期期末模擬試卷【含答案】(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022-2023學(xué)年廣東省深圳市高二數(shù)學(xué)下學(xué)期期末模擬 一、單選題 1.已知集合,則(????) A. B. C. D. 2.若,則復(fù)數(shù)z的虛部為(???) A.-5 B.5 C.7 D.-7 3.已知,則的值為(????) A. B. C. D. 4.過點的直線中,被圓截得的弦最長的直線的方程是(????) A. B. C. D. 5.展開式中的系數(shù)是(????) A. B. C. D. 6.函數(shù)的圖象大致為(????) A. B. C. D. 7.在某項測試中,測量結(jié)果服從正態(tài)分布,若,則(????) A.0.1 B.0.2 C.0.3 D.0

2、.4 8.已知的內(nèi)角A,B,C的對邊分別為a,b,c,的面積為,,,則(????) A.4 B. C.8 D. 二、多選題 9.關(guān)于函數(shù)的圖象,下列說法正確的是(????) A.是曲線的一個對稱中心 B.是曲線的一條對稱軸 C.曲線向左平移個單位,可得曲線 D.曲線向右平移個單位,可得曲線 10.設(shè)有兩條不同的直線m、n和兩個不同的平面、,下列命題中錯誤的命題是(????) A.若,,則 B.若,,,,則 C.若,,則 D.若,,則 11.函數(shù)的圖象如圖所示,則以下結(jié)論正確的有(????) ?? A. B. C. D. 12.已

3、知函數(shù)如下表所示,則下列結(jié)論錯誤的是(????) x 1 2 3 4 A. B.的值域是 C.的值域是 D.在區(qū)間上單調(diào)遞增 三、填空題 13.已知中,,則_________. ?? 14.函數(shù)的圖象恒過定點A,若點A在直線上,其中,則的最小值為_________. 15.已知甲袋中有3個白球和2個紅球,乙袋中有2個白球和4個紅球.若先隨機取一只袋,再從該袋中先后隨機取2個球,則在第一次取出的球是紅球的前提下,第二次取出的球是白球的概率為______. 16.下列命題中正確的命題有______.(填序號) ①線性回歸直線必過樣

4、本數(shù)據(jù)的中心點;②當(dāng)相關(guān)性系數(shù)時,兩個變量正相關(guān);③如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)r就越接近于1; ④殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越高; ⑤甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好. 四、解答題 17.設(shè)數(shù)列的前項和滿足,且,,成等比數(shù)列. (1)求數(shù)列的通項公式; (2)設(shè)是首項為1,公差為2的等差數(shù)列,求數(shù)列的通項公式與前項和. 18.在△ABC中,已知,,再從條件①、條件②這兩個條件中選擇一個作為已知. (1)求; (2)求△ABC的面積. 條件①:;條件②:. 19.如圖,在直三棱柱中,. ??

5、 (1)求證:; (2)求與平面所成的角的大小. 20.浙江省是第一批新高考改革省份,取消文理分科,變成必考科目和選考科目.其中必考科目是語文、數(shù)學(xué)、外語,選考科目由考生在思想政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7個科目中自主選擇其中3個科目參加等級性考試.為了調(diào)查學(xué)生對物理、化學(xué)、生物的選考情況,從鎮(zhèn)海中學(xué)高三在物理、化學(xué)、生物三個科目中至少選考一科的學(xué)生中隨機抽取100名學(xué)生進行調(diào)查,他們選考物理、化學(xué)、生物的科目數(shù)及人數(shù)統(tǒng)計如表: 選考物理、化學(xué)、生物的科目數(shù) 1 2 3 人數(shù) 20 40 40 (1)從這100名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目

6、數(shù)相等的概率; (2)從這100名學(xué)生中任選2名,記X表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)之差的絕對值,求隨機變量X的數(shù)學(xué)期望; (3)學(xué)校還調(diào)查了這100位學(xué)生的性別情況,研究男女生中純理科生大概的比例,得到的數(shù)據(jù)如下表:(定文同時選考物理、化學(xué)、生物三科的學(xué)生為純理科生) 性別 純理科生 非純理科生 總計 男性 30 女性 5 總計 100 請補齊表格,并說明依據(jù)小概率值的獨立性檢驗,能否認(rèn)為同時選考物理、化學(xué)、生物三科與學(xué)生性別有關(guān). 參考公式:,其中. 附表: 0.10 0.05 0.010 0.001

7、2.706 3.841 6.635 10.828 21.已知橢圓過點,長軸長為. (1)求橢圓的方程及其焦距; (2)直線與橢圓交于不同的兩點,直線分別與直線交于點,為坐標(biāo)原點且,求證:直線過定點,并求出定點坐標(biāo). 22.已知函數(shù),,; (1)當(dāng)時,求曲線在點處的切線方程; (2)若正數(shù)a使得對恒成立,求a的取值范圍. 參考答案: 1.D 【分析】根據(jù)題意,求得,或,結(jié)合交集的運算,即可求解. 【詳解】由集合,或, 所以. 故選:D. 2.A 【分析】根據(jù)復(fù)數(shù)的運算、復(fù)數(shù)的概念求值即可. 【詳解】依題意,,故z的虛部為-5. 故選:A 3.B 【分

8、析】由誘導(dǎo)公式化簡,再根據(jù)商數(shù)公式弦化切即可得答案. 【詳解】. 故選:B. 4.D 【分析】當(dāng)直線被圓截得的弦長最大時,直線要經(jīng)過圓心,然后根據(jù)點斜式方程可得所求. 【詳解】的圓心為, 過點的直線中,被圓截得的弦最長的直線必過圓心, 所以, 所以直線方程為,即. 故選:D. 5.A 【分析】分兩種情況計算:①第一個多項式含1,后一個含;②第一個多項式含,后一個含,把兩種情況的系數(shù)相加即可. 【詳解】由知展開式中含項情況為: ①, ②, 所以展開式中的系數(shù)是:. 故選:A. 6.C 【分析】利用定義域可排除AB,用導(dǎo)數(shù)討論函數(shù)在上的單調(diào)性可排除D. 【詳解

9、】易知函數(shù)的定義域為,在x<0時,f(x)>0,故AB錯誤; 當(dāng)時,,所以 所以函數(shù)在上單調(diào)遞增,故D錯誤. 故選:C 7.B 【分析】根據(jù)正態(tài)分布的性質(zhì),利用其概率公式,可得答案. 【詳解】由題意可知,變量所作的正態(tài)曲線關(guān)于直線對稱, 則,, 故. 故選:B. 8.B 【分析】由已知利用三角形面積公式可求,結(jié)合利用余弦定理求出邊. 【詳解】解:,的面積為,∴, 又,由余弦定理, ,可得: . 故選:B 9.AD 【分析】利用誘導(dǎo)公式化簡函數(shù),再逐項計算判斷作答. 【詳解】依題意,函數(shù), 對于A,,是曲線的一個對稱中心,A正確; 對于B,,不是曲線的對稱

10、軸,B錯誤; 對于C,曲線向左平移個單位,得,C錯誤; 對于D,曲線向右平移個單位,得,D正確. 故選:AD 10.ABC 【分析】根據(jù)直線與直線的位置關(guān)系可判斷A;根據(jù)面面平行的判定定理可判斷B;根據(jù)線面的位置關(guān)系判斷C;根據(jù)面面平行的性質(zhì)定理判斷D. 【詳解】對于A,若,,則可能平行、異面或相交,A錯誤; 對于B,若,,,,不一定為相交直線, 只有當(dāng)為相交直線時,才可得到,故B錯誤; 對于C,當(dāng),時,可能是,推不出一定是,C錯誤; 對于D,若,,根據(jù)面面平行的性質(zhì)可知,D正確, 故選:ABC 11.BC 【分析】由的圖象得到函數(shù)的單調(diào)區(qū)間與極值,求出函數(shù)的導(dǎo)函數(shù),

11、即可得到和為方程的兩根且,利用韋達定理即可表示出、,從而得解; 【詳解】由的圖象可知在和上單調(diào)遞增,在上單調(diào)遞減,在處取得極大值,在處取得極小值, 又,所以和為方程的兩根且; 所以,, 所以,,,,故A錯誤,B正確; 所以,,故C正確,D錯誤. 故選:BC 12.ACD 【分析】根據(jù)給定的自變量值與函數(shù)對應(yīng)值表,逐一分析判斷作答. 【詳解】由表知,則,A錯誤; 的值域為,B正確,C錯誤; 當(dāng)時,,當(dāng)時,,因此在上不是單調(diào)遞增的,D錯誤. 故選:ACD. 13./0.6 【分析】由以為基底表示,結(jié)合,,可得,后即可得答案. 【詳解】由圖可得,因,則 ,則, 因,

12、則,,代入上式有: ,.則. 故答案為: 14./ 【分析】根據(jù)指數(shù)函數(shù)圖象的特點,求出點頂點,得到,再由,利用基本不等式即可求解. 【詳解】令,可得,此時, 所以函數(shù)圖象恒過定點, 因為點A在直線上,所以,所以, 所以, 當(dāng)且僅當(dāng) ,即時等號成立. 綜上,的最小值為. 故答案為:. 15. 【分析】設(shè)出事件,根據(jù)全概率公式得到,,再利用條件概率公式計算得到答案. 【詳解】設(shè)第一次取出紅球的事件為,第二次取出的球是白球的事件為, 取到甲袋,乙袋的事件分別為,, 則, , 則. 故答案為:. 16.①② 【分析】利用回歸直線的性質(zhì)可以判斷①②正確;③相關(guān)

13、性系數(shù)r的絕對值就越接近于1,所以該命題錯誤;④回歸方程的預(yù)報精確度越不高,所以該命題錯誤;⑤模型甲的擬合效果更好,所以該命題錯誤. 【詳解】解:①線性回歸直線必過樣本數(shù)據(jù)的中心點,所以該命題正確; ②當(dāng)相關(guān)性系數(shù)時,兩個變量正相關(guān),所以該命題正確; ③如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)r的絕對值就越接近于1,所以該命題錯誤; ④殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越不高,所以該命題錯誤; ⑤甲、乙兩個模型的分別約為0.88和0.80,則模型甲的擬合效果更好,所以該命題錯誤. 故答案為:①② 17.(1) (2), 【分析】(1)先根據(jù)得到,利

14、用,,成等比數(shù)列,可得,可判斷數(shù)列是首項為1,公比為2的等比數(shù)列,即可得. (2)由得,利用分組求和法可得. 【詳解】(1)由已知,有, 即,從而,, 又因為,,成等比數(shù)列,即, 所以,解得, 所以,數(shù)列是首項為1,公比為2的等比數(shù)列, 故. (2)因為是首項為1,公差為2的等差數(shù)列,所以, 所以數(shù)列的通項公式為, . 18.(1)條件選擇見解析, (2) 【分析】(1)根據(jù)所選條件,應(yīng)用平方關(guān)系、和角正弦公式或正弦定理求; (2)由所選條件,應(yīng)用正余弦定理求邊,再由三角形面積公式求面積即可. 【詳解】(1)選①:因為,,B,, 所以,. 所以.

15、 所以. 選②:由,,可得. 由正弦定理得. (2)選①:由正弦定理得. 所以. 選②:由余弦定理,得. 即,解得(負(fù)值舍), 所以. 19.(1)證明見解析 (2) 【分析】(1)根據(jù)直三棱柱的性質(zhì)和各棱長可知,連接,利用線面垂直的判定定理可得平面,易知四邊形為菱形,可得平面,由線面垂直的性質(zhì)即可得; (2)取的中點,連接,可證明是與平面所成角的平面角,在中,易知,,即與平面所成的角的大小為. 【詳解】(1)連接與相交于點,如下圖所示 ?? 在直棱柱中,平面平面, , 又,平面, 所以,平面, 又平面, ,四邊形為菱形,即 又,且平面, 平面,又

16、平面, . (2)取的中點,連接.如下圖所示; ?? , 又平面平面, 又,且平面, 平面, 是在面內(nèi)的射影,是與平面所成角的平面角. 在中,易知, , 即與平面所成的角的大小為. 20.(1) (2) (3)表格見解析,可以認(rèn)為同時選考物理、化學(xué)、生物三科與學(xué)生性別有關(guān) 【分析】(1)根據(jù)古典概型結(jié)合組合數(shù)分析運算; (2)根據(jù)題意結(jié)合古典概型求分布列,進而可求期望; (3)根據(jù)題意完善列聯(lián)表,求值,并與臨界值對比分析. 【詳解】(1)記“所選取的2名學(xué)生選考物理、化學(xué)、生物科目數(shù)量相等”為事件A, 則兩人選考物理、化學(xué)、生物科目數(shù)量(以下用科目

17、數(shù)或選考科目數(shù)指代)為1的情況數(shù)為, 數(shù)目為2的為,數(shù)目為3的有,則. (2)由題意可知X的可能取值分別為0,1,2. 當(dāng)X為0時,對應(yīng)概率為(1)中所求概率:; 當(dāng)X為1時,1人選考科目數(shù)為1,另一人為2或1人為2,1人為3: ; 當(dāng)X為2時,1人為1,1人為3:. 則分布列如圖所示: X 0 1 2 P 故X的期望為. (3)由題意可得: 性別 純理科生 非純理科生 總計 男性 30 55 85 女性 10 5 15 總計 40 60 100 零假設(shè)為:同時選考物理、化學(xué)、生物三科與學(xué)生性別相互獨立, 即同

18、時選考物理、化學(xué)、生物與學(xué)生性別無關(guān). , 所以依據(jù)小概率值的獨立性檢驗,我們推斷不成立, 即可以認(rèn)為同時選考物理、化學(xué)、生物三科與學(xué)生性別有關(guān),此推斷犯錯誤的概率不大于0.05. 21.(1),焦距為 (2)證明見解析,定點為. 【分析】(1)根據(jù)橢圓過點及列方程組求解; (2)設(shè),,,,聯(lián)立直線和橢圓方程得到韋達定理,再求出點的坐標(biāo),根據(jù)已知得到+=0,再把韋達定理代入化簡即得證. 【詳解】(1)由題得, 所以橢圓的方程為,焦距為. (2)如圖, ?? 直線與橢圓方程聯(lián)立, 化簡得, ,即. 設(shè),,,,則,. 直線的方程為,則, 直線的方程為,則,

19、 因為,所以+=0, 所以, 所以, 把韋達定理代入整理得或, 當(dāng)時,直線方程為,過定點, 即點,不符合題意,所以舍去. 當(dāng)時,直線方程為, 過定點. 所以直線經(jīng)過定點. 22.(1); (2). 【分析】(1)代入的值,求出函數(shù)的導(dǎo)數(shù),計算及,求出切線方程作答. (2)構(gòu)造,按正數(shù)a與1的關(guān)系分類討論,并借助導(dǎo)數(shù)探討函數(shù)的單調(diào)性求解作答. 【詳解】(1)當(dāng)時,,求導(dǎo)得,則, 所以函數(shù)在處的切線方程是:,即. (2)令函數(shù),求導(dǎo)得, 當(dāng)時,,對恒成立, 當(dāng)時,由得:,即在上單調(diào)遞增,則, 因此對恒成立, 當(dāng)時,由得:,在上單調(diào)遞減,則對,, 因此對恒成立,不符合題意, 所以的范圍是.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!