高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題3 概率與統(tǒng)計(jì) 突破點(diǎn)9 隨機(jī)變量及其分布專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:238064537 上傳時間:2023-12-26 格式:DOC 頁數(shù):9 大小:133.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題3 概率與統(tǒng)計(jì) 突破點(diǎn)9 隨機(jī)變量及其分布專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題_第1頁
第1頁 / 共9頁
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題3 概率與統(tǒng)計(jì) 突破點(diǎn)9 隨機(jī)變量及其分布專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題_第2頁
第2頁 / 共9頁
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題3 概率與統(tǒng)計(jì) 突破點(diǎn)9 隨機(jī)變量及其分布專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題_第3頁
第3頁 / 共9頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題3 概率與統(tǒng)計(jì) 突破點(diǎn)9 隨機(jī)變量及其分布專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題3 概率與統(tǒng)計(jì) 突破點(diǎn)9 隨機(jī)變量及其分布專題限時集訓(xùn) 理-人教版高三數(shù)學(xué)試題(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、專題限時集訓(xùn)(九) 隨機(jī)變量及其分布 [建議A、B組各用時:45分鐘] [A組 高考達(dá)標(biāo)] 一、選擇題 1.已知變量X服從正態(tài)分布N(2,4),下列概率與P(X≤0)相等的是(  ) A.P(X≥2) B.P(X≥4) C.P(0≤X≤4) D.1-P(X≥4) B [由變量X服從正態(tài)分布N(2,4)可知,x=2為其密度曲線的對稱軸,因此P(X≤0)=P(X≥4).故選B.] 2.(2016·廈門模擬)某種子每粒發(fā)芽的概率都為0.9,現(xiàn)播種了1 000粒,對于沒有發(fā)芽的種子,每粒需要再補(bǔ)種2粒,補(bǔ)種的種子數(shù)記為X,則X的數(shù)學(xué)期望為(  ) A.100 B.200 C.300

2、 D.400 B [將“沒有發(fā)芽的種子數(shù)”記為ξ,則ξ=1,2,3,…,1 000,由題意可知ξ~B(1 000,0.1),所以E(ξ)=1 000×0.1=100,又因?yàn)閄=2ξ,所以E(X)=2E(ξ)=200,故選B.] 3.現(xiàn)有甲、乙兩個靶,某射手向甲靶射擊一次,命中的概率為;向乙靶射擊兩次,每次命中的概率為.該射手每次射擊的結(jié)果相互獨(dú)立.假設(shè)該射手完成以上三次射擊,該射手恰好命中一次的概率為(  ) A. B. C. D. C [××+××+××=,故選C.] 4.(2016·合肥二模)某校組織由5名學(xué)生參加的演講比賽,采用抽簽法決定演講順序,在“學(xué)生A和B都不是第一

3、個出場,B不是最后一個出場”的前提下,學(xué)生C第一個出場的概率為(  ) 【導(dǎo)學(xué)號:67722035】 A. B. C. D. A [“A和B都不是第一個出場,B不是最后一個出場”的安排方法中,另外3人中任何一個人第一個出場的概率都相等,故“C第一個出場”的概率是.] 5.箱中裝有標(biāo)號為1,2,3,4,5,6且大小相同的6個球.從箱中一次摸出兩個球,記下號碼并放回,如果兩球號碼之積是4的倍數(shù),則獲獎.現(xiàn)在4人參與摸獎,恰好有3人獲獎的概率是(  ) A. B. C. D. B [若摸出的兩球中含有4,必獲獎,有5種情形;若摸出的兩球是2,6,也能獲獎.故獲獎的情形共6種,獲獎的概率

4、為=.現(xiàn)有4人參與摸獎,恰有3人獲獎的概率是C3·=.] 二、填空題 6.隨機(jī)變量ξ的取值為0,1,2.若P(ξ=0)=,E(ξ)=1,則D(ξ)=________.  [由題意設(shè)P(ξ=1)=p, ξ的分布列如下: ξ 0 1 2 P p -p 由E(ξ)=1,可得p=, 所以D(ξ)=12×+02×+12×=.] 7.某學(xué)校一年級共有學(xué)生100名,其中男生60人,女生40人.來自北京的有20人,其中男生12人,若任選一人是女生,則該女生來自北京的概率是________.  [設(shè)事件A為“任選一人是女生”,B為“任選一人來自北京”,依題意知,來自北京的女生有

5、8人,這是一個條件概率,問題即計(jì)算P(B|A). 由于P(A)=,P(AB)=, 則P(B|A)===.] 8.(2016·黃岡一模)荷花池中,有一只青蛙在成品字形的三片荷葉上跳來跳去(每次跳躍時,均從一葉跳到另一葉),而且逆時針方向跳的概率是順時針方向跳的概率的兩倍,如圖9-6所示,假設(shè)現(xiàn)在青蛙在A葉上,則跳三次后仍停在A葉上的概率是________. 圖9-6  [設(shè)順時針跳的概率為p,則逆時針跳的概率為2p,則p+2p=1,即p=,由題意可知,青蛙三次跳躍 的方向應(yīng)相同,即要么全為順時針方向,要么全為逆時針方向,故所求概率P=3+3=+=.] 三、解答題 9.(2016

6、·煙臺二模)甲、乙兩人進(jìn)行象棋比賽,約定每局勝者得1分,負(fù)者得0分.在其中的一方比對方多得2分或下滿5局時停止比賽.設(shè)甲在每局中獲勝的概率為,乙在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立. (1)求沒下滿5局甲即獲勝的概率; (2)設(shè)比賽停止時已下局?jǐn)?shù)為ξ,求ξ的分布列和數(shù)學(xué)期望E(ξ). [解] (1)沒下滿5局甲獲勝有兩種情況: ①是兩局后甲獲勝,此時P1=×=,2分 ②是四局后甲獲勝,此時P2=××=,4分 所以甲獲勝的概率P=P1+P2=+=.5分 (2)依題意知,ξ的所有可能值為2,4,5.6分 設(shè)前4局每兩局比賽為一輪,則該輪結(jié)束時比賽停止的概率為: 2+2=.7分

7、 若該輪結(jié)束時比賽還將繼續(xù),則甲、乙在該輪中必是各得一分,此時,該輪比賽結(jié)果對下輪比賽是否停止沒有影響,從而有: P(ξ=2)=,P(ξ=4)==,P(ξ=5)=2=.10分 所以ξ的分布列為: ξ 2 4 5 P 故E(ξ)=2×+4×+5×=.12分 10.甲、乙兩班進(jìn)行消防安全知識競賽,每班出3人組成甲、乙兩支代表隊(duì),首輪比賽每人一道必答題,答對則為本隊(duì)得1分,答錯或不答都得0分.已知甲隊(duì)3人每人答對的概率分別為,,,乙隊(duì)每人答對的概率都是.設(shè)每人回答正確與否相互之間沒有影響,用ξ表示甲隊(duì)總得分. (1)求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望E(ξ); (2

8、)求在甲隊(duì)和乙隊(duì)得分之和為4的條件下,甲隊(duì)比乙隊(duì)得分高的概率. [解] (1)ξ的可能取值為0,1,2,3. P(ξ=0)=××=;1分 P(ξ=1)=××+××+××=;2分 P(ξ=2)=××+××+××=;3分 P(ξ=3)=××=.4分 所以ξ的分布列為 ξ 0 1 2 3 P 6分 所以E(ξ)=0×+1×+2×+3×=.8分 (2)設(shè)“甲隊(duì)和乙隊(duì)得分之和為4”為事件A,“甲隊(duì)比乙隊(duì)得分高”為事件B, 則P(A)=×C3+×C2×+×C1×2=.10分 P(AB)=×C1×2=.11分 P(B|A)===.12分 [B組 名校沖刺

9、] 一、選擇題 1.(2016·河北第二次聯(lián)考)已知袋子中裝有大小相同的6個小球,其中有2個紅球、4個白球.現(xiàn)從中隨機(jī)摸出3個小球,則至少有2個白球的概率為(  ) A. B. C. D. C [所求問題有兩種情況:1紅2白或3白,則所求概率P==.] 2.如圖9-7,△ABC和△DEF是同一個圓的內(nèi)接正三角形,且BC∥EF.將一顆豆子隨機(jī)地扔到該圓內(nèi),用M表示事件“豆子落在△ABC內(nèi)”,N表示事件“豆子落在△DEF內(nèi)”,則P(|M)=(  ) 圖9-7 A. B. C. D. C [如圖,作三條輔助線,根據(jù)已知條件知這些小三角形都全等,△ABC包含9個小三角形,滿足事

10、件M的有3個小三角形,所以P(|M)===,故選C.] 3.設(shè)隨機(jī)變量X服從正態(tài)分布N(2,9),若P(X>c+1)=P(X

11、×=1.5.] 二、填空題 5.現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任選3道題作答.已知所選的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨(dú)立,則張同學(xué)恰好答對2道題的概率為________.  [設(shè)張同學(xué)答對甲類題的數(shù)目為x,答對乙類題的數(shù)目為y,答對題的總數(shù)為X,則X=x+y.所以P(X=2)=P(x=2,y=0)+P(x=1,y=1)=C×2×+C×××=.] 6.某商場在兒童節(jié)舉行回饋顧客活動,凡在商場消費(fèi)滿100元者即可參加射擊贏玩具活動,具體規(guī)則如下:每人最多可射擊3次,一旦擊中,則可獲獎且

12、不再繼續(xù)射擊,否則一直射擊到3次為止.設(shè)甲每次擊中的概率為p(p≠0),射擊次數(shù)為η,若η的數(shù)學(xué)期望E(η)>,則p的取值范圍是________. 【導(dǎo)學(xué)號:67722036】  [由已知得P(η=1)=p,P(η=2)=(1-p)p,P(η=3)=(1-p)2,則E(η)=p+2(1-p)p+3(1-p)2=p2-3p+3>,解得p>或p<,又p∈(0,1),所以p∈.] 三、解答題 7.(2016·鄭州模擬)已知從A地到B地共有兩條路徑L1和L2,據(jù)統(tǒng)計(jì),經(jīng)過兩條路徑所用的時間互不影響,且經(jīng)過L1與L2所用時間落在各時間段內(nèi)的頻率分布直方圖分別如圖9-8(1)和圖(2).

13、(1)        (2) 圖9-8 現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于從A地到B地. (1)為了盡最大可能在各自允許的時間內(nèi)趕到B地,甲和乙應(yīng)如何選擇各自的路徑? (2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到B地的人數(shù),針對(1)的選擇方案,求X的分布列和數(shù)學(xué)期望. [解] (1)用Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到B地”,B i表示事件“乙選擇路徑Li時,50分鐘內(nèi)趕到B地”,i=1,2.1分 由頻率分布直方圖及頻率估計(jì)相應(yīng)的概率可得 P(A1)=(0.01+0.02+0.03)×10=0.6, P(A2)=(0.01+0.04)×10=0.5.

14、 ∵P(A1)>P(A2),故甲應(yīng)選擇L1.3分 P(B1)=(0.01+0.02+0.03+0.02)×10=0.8, P(B2)=(0.01+0.04+0.04)×10=0.9. ∵P(B2)>P(B1),故乙應(yīng)選擇L2.5分 (2)用M,N分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到B地, 由(1)知P(M)=0.6,P(N)=0.9,又由題意知,M,N相互獨(dú)立,7分 ∴P(X=0)=P()=P()P()=0.4×0.1=0.04; P(X=1)=P(N+M)=P()P(N)+P(M)P() =0.4×0.9+0.6×0.1=0.42; P(X=2)=P(

15、MN)=P(M)P(N)=0.6×0.9=0.54.9分 ∴X的分布列為 X 0 1 2 P 0.04 0.42 0.54 ∴E(X)=0×0.04+1×0.42+2×0.54=1.5.12分 8.氣象部門提供了某地區(qū)今年六月份(30天)的日最高氣溫的統(tǒng)計(jì)表如下: 日最高氣溫t/℃ t≤22 2232 天數(shù) 6 12 Y Z 由于工作疏忽,統(tǒng)計(jì)表被墨水污染,Y和Z數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.9.某水果商根據(jù)多年的銷售經(jīng)驗(yàn),六月份的日最高氣溫t(單位:℃)對西瓜的銷售影

16、響如下表: 日最高氣溫t/℃ t≤22 2232 日銷售額 X/千元 2 5 6 8 (1)求Y,Z的值; (2)若視頻率為概率,求六月份西瓜日銷售額X的期望和方差; (3)在日最高氣溫不高于32℃時,求日銷售額不低于5千元的概率. [解] (1)由已知得P(t≤32)=0.9,所以P(t>32)=1-P(t≤32)=0.1,所以Z=30×0.1=3,Y=30-(6+12+3)=9.3分 (2)由題意,知X的所有可能取值為2,5,6,8. 易知P(X=2)=P(t≤22)==0.2,P(X=5)=P(2232)==0.1. 所以六月份西瓜日銷售額X的分布列為 X 2 5 6 8 P 0.2 0.4 0.3 0.1 6分 所以E(X)=2×0.2+5×0.4+6×0.3+8×0.1=5,7分 D(X)=(2-5)2×0.2+(5-5)2×0.4+(6-5)2×0.3+(8-5)2×0.1=3.8分 (3)因?yàn)镻(t≤32)=0.9,P(22

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!