(江蘇專用)高考數(shù)學(xué)總復(fù)習 第二篇 函數(shù)與基本初等函數(shù)《第11講 函數(shù)與方程》理(含解析) 蘇教版

上傳人:文*** 文檔編號:239373964 上傳時間:2024-01-25 格式:DOC 頁數(shù):6 大?。?05.74KB
收藏 版權(quán)申訴 舉報 下載
(江蘇專用)高考數(shù)學(xué)總復(fù)習 第二篇 函數(shù)與基本初等函數(shù)《第11講 函數(shù)與方程》理(含解析) 蘇教版_第1頁
第1頁 / 共6頁
(江蘇專用)高考數(shù)學(xué)總復(fù)習 第二篇 函數(shù)與基本初等函數(shù)《第11講 函數(shù)與方程》理(含解析) 蘇教版_第2頁
第2頁 / 共6頁
(江蘇專用)高考數(shù)學(xué)總復(fù)習 第二篇 函數(shù)與基本初等函數(shù)《第11講 函數(shù)與方程》理(含解析) 蘇教版_第3頁
第3頁 / 共6頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《(江蘇專用)高考數(shù)學(xué)總復(fù)習 第二篇 函數(shù)與基本初等函數(shù)《第11講 函數(shù)與方程》理(含解析) 蘇教版》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用)高考數(shù)學(xué)總復(fù)習 第二篇 函數(shù)與基本初等函數(shù)《第11講 函數(shù)與方程》理(含解析) 蘇教版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 A級 基礎(chǔ)達標演練 (時間:45分鐘 滿分:80分) 一、填空題(每小題5分,共35分) 1.(2011·南通無錫調(diào)研)已知方程2x=10-x的根x∈(k,k+1),k∈Z,則k=________. 解析 設(shè)f(x)=2x+x-10,則由f(2)=-4<0,f(3)=1>0,所以f(x)的零點在(2,3)內(nèi). 答案 2 2.(2011·山東省濟寧模擬)已知a是函數(shù)f(x)=2x-logx的零點,若0<x0<a,則f(x0)的值滿足________(與零的關(guān)系). 解析 因為f(x)是(0,+∞)上的增函數(shù),且f(a)=0,于是由0<x0<a,得f(x0)<f(a)=

2、0,即f(x0)<0. 答案 f(x0)<0 3.若函數(shù)f(x)=ax+b的零點為2,那么函數(shù)g(x)=bx2-ax的零點是________. 解析 由f(x)=ax+b有零點2,得2a+b=0(a≠0),代入g(x),得g(x)=-2ax2-ax=-ax(2x+1),它有零點x=0和x=-. 答案 0,- 4.設(shè)函數(shù)y(x)=x-ln x(x>0),則函數(shù)f(x)在區(qū)間(0,1),(1,+∞)內(nèi)的零點個數(shù)分別為________. 解析 設(shè)y=x與y=ln x,作圖象可知f(x)在區(qū)間(0,1)內(nèi)無零點,在(1,+∞)內(nèi)僅有兩個零點. 答案 0,2 5.(2011·常州模擬

3、)若函數(shù)f(x)=x2+ax+b的兩個零點是-2和3,則不等式af(-2x)>0的解集是________. 解析 ∵f(x)=x2+ax+b的兩個零點是-2,3. ∴-2,3是方程x2+ax+b=0的兩根, 由根與系數(shù)的關(guān)系知∴ ∴f(x)=x2-x-6.∵不等式af(-2x)>0, 即-(4x2+2x-6)>0?2x2+x-3<0, 解集為. 答案  6.(2011·山東省菏澤測試)設(shè)函數(shù)f(x)=則函數(shù)g(x)=f(x)-log4x的零點個數(shù)為________. 解析 設(shè)y=f(x)與y=log4 x,分別畫出它們的圖象,得恰有3個交點,所以函數(shù)g(x)的零點個數(shù)為3.

4、 答案 3 7.(2010·南通調(diào)研)已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有3個零點,則實數(shù)m的取值范圍是________. 解析 畫出圖象,令g(x)=f(x)-m=0,即f(x)與y=m的圖象的交點有3個,∴0<m<1. 答案 (0,1) 二、解答題(每小題15分,共45分) 8.若函數(shù)f(x)=ax2-x-1有且僅有一個零點,求實數(shù)a的取值范圍. 解 (1)當a=0時,函數(shù)f(x)=-x-1為一次函數(shù),則-1是函數(shù)的零點,即函數(shù)僅有一個零點. (2)當a≠0時,函數(shù)f(x)=ax2-x-1為二次函數(shù),并且僅有一個零點,則一元二次方程ax2-x-1=0有兩個相等

5、實根.∴Δ=1+4a=0,解得a=-. 綜上,當a=0或a=-時,函數(shù)僅有一個零點. 9.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實根,且一個大于4,一個小于4,求實數(shù)m的取值范圍. 解 令f(x)=mx2+2(m+3)x+2m+14, 依題意得或即 或解得-<m<0, 即實數(shù)m的取值范圍是. 10.(★)已知函數(shù)f(x)=4x+m·2x+1有且僅有一個零點,求m的取值范圍,并求出該零點. 思路分析 由題意可知,方程4x+m·2x+1=0僅有一個實根,再利用換元法求解. 解 ∵f(x)=4x+m·2x+1有且僅有一個零點, 即方程(2x)2+m·2x+1=0僅

6、有一個實根. 設(shè)2x=t(t>0),則t2+mt+1=0. 當Δ=0時,即m2-4=0, ∴m=-2時,t=1;m=2時,t=-1(不合題意,舍去), ∴2x=1,x=0符合題意. 當Δ>0時,即m>2或m<-2時, t2+mt+1=0有兩正或兩負根, 即f(x)有兩個零點或沒有零點. ∴這種情況不符合題意. 綜上可知:m=-2時,f(x)有唯一零點,該零點為x=0. 【點評】 方程的思想是與函數(shù)思想密切相關(guān)的,函數(shù)問題可以轉(zhuǎn)化為方程問題來解決,方程問題也可以轉(zhuǎn)化為函數(shù)問題來解決,本題就是函數(shù)的零點的問題轉(zhuǎn)化為方程根的問題. B級 綜合創(chuàng)新備選 (時間:30分鐘 滿分:

7、60分) 一、填空題(每小題5分,共30分) 1.(2011·蘇州模擬)偶函數(shù)f(x)在區(qū)間為[0,a](a>0)上是單調(diào),函數(shù),且f(0)·f(a)<0,則方程f(x)=0在區(qū)間[-a,a]內(nèi)根的個數(shù)是________. 解析 由f(0)·f(a)<0,且f(x)在[0,a](a>0)上單調(diào),知f(x)=0在[0,a]上有一根,又函數(shù)f(x)為偶函數(shù),f(x)=0在[-a,0]上也有一根.所以f(x)=0在區(qū)間[-a,a]內(nèi)有兩個根. 答案 2 2.(2010·南通調(diào)研)設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時

8、成立,則實數(shù)a的取值范圍是________. 解析 g(x)=ax-2a=a(x-2), 當a<0時,x>2,由f(2)<0,得4-2a+a+3<0,a>7,舍去; 當a>0時,x<2,由f(2)<0,得4-2a+a+3<0,a>7. 綜上,a∈(7,+∞). 答案 (7,+∞) 3.(2010·南通模擬)如果函數(shù)f(x)=x2+mx+m+2的一個零點是0,則另一個零點是________. 解析 依題意知:m=-2. ∴f(x)=x2-2x, ∴方程x2-2x=0的另一個根為2,即另一個零點是2. 答案 2 4.(2011·鹽城市調(diào)研)已知函數(shù)f(x)=1+x-+-+…+

9、,g(x)=1-x+-+-…-,設(shè)F(x)=f(x+3)·g(x-3),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為________. 解析 由f′(x)=1-x+x2-x3+…+x2 010=,則f′(x)>0,f(x)為增函數(shù),又f(0)=1>0,f(-1)<0,從而f(x)的零點在(-1,0)上;同理g(x)為減函數(shù),零點在(1,2)上,∴F(x)的零點在(-4,-3)和(4,5)上,要區(qū)間[a,b]包含上述區(qū)間(b-a)min=9. 答案 9 5.(2011·南京模擬)若直角坐標平面內(nèi)兩點P、Q滿足條件: ①P、Q都在函數(shù)f(x)的圖象上;

10、 ②P、Q關(guān)于原點對稱,則稱點對(P,Q)是函數(shù)f(x)的一個“友好點對”(點對(P,Q)與(Q,P)看作同一個“友好點對”). 已知函數(shù)f(x)= 則f(x)的“友好點對”有________個. 解析 根據(jù)題意:“友好點對”,可知,只須作出 函數(shù)y=2x2+4x+1(x<0)的圖象關(guān)于原點對稱的圖象, 看它與函數(shù)y=(x≥0)交點個數(shù)即可. 如圖, 觀察圖象可得:它們的交點個數(shù)是:2. 即f(x)的“友好點對”有:2個. 答案 2 6.已知函數(shù)f(x)=x2+(1-k)x-k的一個零點在(2,3)內(nèi),則實數(shù)k的取值范圍是________. 解析 因為Δ=(1-k)2+

11、4k=(1+k)2≥0對一切k∈R恒成立,又k=-1時,f(x)的零點x=-1?(2,3),故要使函數(shù)f(x)=x2+(1-k)x-k的一個零點在(2,3)內(nèi),則必有f(2)·f(3)<0,即2<k<3. 答案 (2,3) 二、解答題(每小題15分,共30分) 7.已知a是實數(shù),函數(shù)f(x)=2ax2+2x-3-a,如果函數(shù)y=f(x)在區(qū)間[-1,1]上有零點,求a的取值范圍. 解 當a=0時,函數(shù)f(x)=2x-3的零點x=?[-1,1]. 當a≠0時,函數(shù)f(x)在[-1,1]上的零點可能有一個與兩個這兩種情況. ①函數(shù)在區(qū)間[-1,1]上只有一個零點,則有 或 解得

12、1≤a≤5或a=. ②函數(shù)在區(qū)間[-1,1]上有兩個零點,則有 或 解得a<或a≥5. 綜上,得a的取值范圍是∪[5,+∞). 8.(1)m為何值時,f(x)=x2+2mx+3m+4. ①有且僅有一個零點;②有兩個零點且均比-1大; (2)若函數(shù)f(x)=|4x-x2|+a有4個零點,求實數(shù)a的取值范圍. 解 (1)①f(x)=x2+2mx+3m+4有且僅有一個零點?方程f(x)=0有兩個相等實根?Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,∴m=4或m=-1. ②法一 設(shè)f(x)的兩個零點分別為x1,x2, 則x1+x2=-2m,x1·x2=3m+4. 由題意,知? ? ∴-5<m<-1.故m的取值范圍為(-5,-1). 法二 由題意,知即 ∴-5<m<-1.∴m的取值范圍為(-5,-1). (2)令f(x)=0,得|4x-x2|+a=0, 則|4x-x2|=-a. 令g(x)=|4x-x2|, h(x)=-a. 作出g(x),h(x)的圖象. 由圖象可知,當0<-a<4, 即-4<a<0時,g(x)與h(x)的圖象有4個交點, 即f(x)有4個零點.故a的取值范圍為(-4,0).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!