BI商務(wù)智能--數(shù)據(jù)迷霧中(PPT 46)

上傳人:gfy****yf 文檔編號:253405955 上傳時間:2024-12-14 格式:PPT 頁數(shù):46 大?。?78.50KB
收藏 版權(quán)申訴 舉報 下載
BI商務(wù)智能--數(shù)據(jù)迷霧中(PPT 46)_第1頁
第1頁 / 共46頁
BI商務(wù)智能--數(shù)據(jù)迷霧中(PPT 46)_第2頁
第2頁 / 共46頁
BI商務(wù)智能--數(shù)據(jù)迷霧中(PPT 46)_第3頁
第3頁 / 共46頁

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《BI商務(wù)智能--數(shù)據(jù)迷霧中(PPT 46)》由會員分享,可在線閱讀,更多相關(guān)《BI商務(wù)智能--數(shù)據(jù)迷霧中(PPT 46)(46頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、,*,來自中國最大的資料庫下載 中國最大的資料庫下載 中國最大的資料庫下載,單擊此處編輯母版文本樣式,第二級,第三級,第四級,第五級,單擊此處編輯母版標(biāo)題樣式,“電子技術(shù)到來以后,人延伸出(或者說在體外建立了)一個活生生的中樞神經(jīng)系統(tǒng)。,麥克盧漢,理解媒介,1,數(shù)據(jù)迷霧中,迷茫,2,一個平常飲料店的故事,1993年前,店里賣的飲料只有啤酒、可口可樂和北冰洋汽水,進貨出貨老板在一個舊本子上記錄,一個平常飲料店的故事,1995年,生意大了,各處開了分號,飲料多了,酒也多了,有幾十種。,店里裝了自動柜員機,柜員機里記的賬天天都打印出來送給老板。,老板看不過來,加個總數(shù)就算了,但生意該怎么做,老板還算

2、清楚。,一個平常飲料店的故事,1998年,經(jīng)營的品種過了百,店里連了網(wǎng),用上了財務(wù)軟件。,1999年又上了互聯(lián)網(wǎng),客人來自四面八方。賬單每天打出厚厚一堆,老板瞧著密密麻麻的數(shù)字楞神,直嚷嚷生意難做。,數(shù)據(jù)迷霧鋪天蓋地,美國MCI是跨國的電信公司,長途電話客戶2億,電腦里數(shù)據(jù)存了5TB,每月還增加300GB。,據(jù)美國加州一所大學(xué)研究,世界上每個人,不管死活,已經(jīng)產(chǎn)生或?qū)⒁a(chǎn)生250MB的數(shù)據(jù),每年全球數(shù)據(jù)凈增21010GB。,如何應(yīng)對?,商務(wù)智能,7,什么是商務(wù)智能,商業(yè)智能是對商業(yè)信息的搜集、管理和分析過程,目的是使企業(yè)的各級決策者獲得知識或洞察力,促使他們做出對企業(yè)更有利的決策。,商業(yè)智能一

3、般由數(shù)據(jù)倉庫(或數(shù)據(jù)場)、數(shù)據(jù)分析、數(shù)據(jù)挖掘、在線分析、數(shù)據(jù)備份和恢復(fù)等局部組成。,什么是商務(wù)智能,商務(wù)智能是從累計的原始數(shù)據(jù)中提取有用信息的過程,商務(wù)智能為決策者在正確的時間,地點提供關(guān)于企業(yè)運營情況的各項信息使之能夠做出準(zhǔn)確的決定,背景,商業(yè)智能(BI)的概念最早是Gartner Group于1996年提出,執(zhí)行信息系統(tǒng)(EIS),決策支持系統(tǒng)(DSS)。,為什么需要商務(wù)智能,促進銷售,加深客戶關(guān)系,改進產(chǎn)品,提供更好的效勞,協(xié)調(diào)企業(yè)運營,降低本錢,提高決策水平,Business Intelligence helps track what really works and what doe

4、snt.,Bill Gates,Chairman,Microsoft,通過BI幫助我們,提高企業(yè)效益,建立忠實的顧客群,增進企業(yè)效率,做出明智的決策,商務(wù)智能內(nèi)容,產(chǎn)品分析,哪種產(chǎn)品贏利情況最好?,哪種產(chǎn)品贏利最差卻賣的最快?,哪種產(chǎn)品組合對一定收入的家庭最有吸引力?,商務(wù)智能內(nèi)容,銷售分析,一家已開張兩年的分店銷售趨勢如何?,附近地區(qū)是否存在競爭者?,哪種產(chǎn)品的贏利有向上的趨勢及哪類顧客購置了這些產(chǎn)品?,商務(wù)智能內(nèi)容,顧客分析,提供頭10%利潤的顧客有什么特點?,購置產(chǎn)品或效勞三個月后顧客的流失率是多少?,過去六個月里比平均消費額高兩個百分點的都是誰?,眾多行業(yè)積極尋求BI解決方案的,零售、

5、保險、銀行、通信、離散制造、政府、醫(yī)療、分銷、流程制造、教育等。,商務(wù)智能如何工作,數(shù)據(jù):把不同來源的數(shù)據(jù)匯總為一個數(shù)據(jù)倉庫,內(nèi)涵:商務(wù)智能工具通過分析這些數(shù)據(jù)來幫助人們更好地了解企業(yè)情況,行動:通過分析來更有效地分配資源,商務(wù)智能系統(tǒng)結(jié)構(gòu),數(shù)據(jù)倉庫(Data Warehouse,DW),聯(lián)機分析處理(On-Line Analytical Processing,OLAP),數(shù)據(jù)挖掘(Data Mining,DM),數(shù)據(jù)倉庫(DW),數(shù)據(jù)倉庫,是在數(shù)據(jù)庫已經(jīng)大量存在的情況下,為了進一步挖掘數(shù)據(jù)資源、為了決策需要而產(chǎn)生的,它決不是所謂的“大型數(shù)據(jù)庫。,W.H.Inmon關(guān)于數(shù)據(jù)倉庫的定義:面向主題

6、的、集成的、與時間相關(guān)且不可修改的數(shù)據(jù)集合。,面向主題,傳統(tǒng)數(shù)據(jù)庫主要是為應(yīng)用程序進行數(shù)據(jù)處理,未必按照同一主題存儲數(shù)據(jù),數(shù)據(jù)倉庫側(cè)重于數(shù)據(jù)分析工作,是按照主題存儲的,與時間相關(guān),數(shù)據(jù)庫保存信息的時候,并不強調(diào)一定有時間信息,數(shù)據(jù)倉庫則不同,出于決策的需要,數(shù)據(jù)倉庫中的數(shù)據(jù)都要標(biāo)明時間屬性,不可修改,數(shù)據(jù)庫處理的是日常事務(wù)數(shù)據(jù),有的需要不斷更新,數(shù)據(jù)倉庫反映的是歷史信息,可以添加,但不可更改。,數(shù)據(jù)倉庫生成,Extract,Transfer,and Load(ETL),Model,Integrate,Data,ETL,Data warehouse,數(shù)據(jù)展現(xiàn),面向高層決策者的主管信息系統(tǒng)(EIS

7、),面向決策分析者的聯(lián)機分析系統(tǒng)(OLAP),決策者上的即席查詢系統(tǒng)(Ad Hoc),靈活報表系統(tǒng)(Reporting),數(shù)據(jù)展現(xiàn)采用多種靈活的方式,比方C/S模式或B/S模式,聯(lián)機分析處理(OLAP),OLAP委員會的定義:是使分析人員、管理人員或執(zhí)行人員能夠從多種角度對從原始數(shù)據(jù)中轉(zhuǎn)化出來的、能夠真正為用戶所理解的、并真實反映企業(yè)維特性的信息進行快速、一致、交互地存取,從而獲得對數(shù)據(jù)的更深入了解的一類軟件技術(shù)。,OLAP的目標(biāo):是滿足決策支持或多維環(huán)境特定的查詢和報表需求,它的技術(shù)核心是“維這個概念,因此OLAP也可以說是多維數(shù)據(jù)分析工具的集合。,開展背景,60年代,關(guān)系數(shù)據(jù)庫之父E.F.

8、Cdd提出了關(guān)系模型,促進了聯(lián)機事務(wù)處理(OLTP)的開展(數(shù)據(jù)以表格的形式而非文件方式存儲)。,1993年,E.F.Cdd提出了多維數(shù)據(jù)庫和多維分析的概念,即OLAP,OLAP多維數(shù)據(jù)結(jié)構(gòu),超立方結(jié)構(gòu)(Hypercube),多立方結(jié)構(gòu)(Multicube),OLAP多維數(shù)據(jù)分析,切片和切塊(Slice and Dice):在多維數(shù)據(jù)結(jié)構(gòu)中,按二維進行切片,按三維進行切塊,可得到所需要的數(shù)據(jù),OLAP多維數(shù)據(jù)分析,鉆取(Drill):鉆取包含向下鉆取(Drill-down)和向上鉆取(Drill-up)/上卷(Roll-up)操作,OLAP多維數(shù)據(jù)分析,旋轉(zhuǎn)(Rotate)/轉(zhuǎn)軸(Pivot)

9、:通過旋轉(zhuǎn)可以得到不同視角的數(shù)據(jù),數(shù)據(jù)挖掘(DM),一方面規(guī)模龐大、紛繁復(fù)雜的數(shù)據(jù)體系讓使用者漫無頭緒、無從下手;,另一方面在這些大量數(shù)據(jù)的背后卻隱藏著很多具有決策意義的有價值的信息。,數(shù)據(jù)挖掘(DM),如何發(fā)現(xiàn)這些有用的知識,使之為管理決策和經(jīng)營戰(zhàn)略開展效勞?,數(shù)據(jù)挖掘(Data Mining)。,DM應(yīng)用實例(購物環(huán)境設(shè)計),某超市,需要設(shè)計一個吸引客人購置商品的最正確環(huán)境。通過對客人的采購路線和消費記錄的挖掘發(fā)現(xiàn):美國女性的視線高度是150cm左右,而男性是163cm左右,最適宜的視線角度是視線高度以下15度。因此,最好的貨品擺設(shè)位置是在130到135厘米之間。,按照DM找出的特別信息,

10、該超市里的主打產(chǎn)品,總是擺在最容易發(fā)現(xiàn)的高度區(qū)內(nèi)。,DM應(yīng)用實例(客戶購置模式識別),Safeway是英國的第三大連鎖超市,年銷售額超過一百億美元,運用傳統(tǒng)的方法降低價位、擴充店面以及增加商品種類,若想在競爭中取勝已經(jīng)越來越困難了,必須以客戶為導(dǎo)向,了解六百萬客戶所做的每一筆交易以及這些交易彼此之間的關(guān)聯(lián)性,DM應(yīng)用實例(客戶購置模式識別),Safeway首先根據(jù)客戶的相關(guān)資料,將客戶分為150類,再用關(guān)聯(lián)(Association)的技術(shù)列出產(chǎn)品相關(guān)度的清單。,比方:“在購置烤肉炭的客戶中,75%的人也會購置打火機燃料。,DM應(yīng)用實例(客戶購置模式識別),Safeway還需要對商品的利潤進行細(xì)

11、分。例如,Safeway發(fā)現(xiàn)某一種乳酪產(chǎn)品雖然銷售額排名第209位,可是消費額最高的客戶中有25%都常常買這種乳酪。,Safeway 知道客戶每次采購時會買哪些產(chǎn)品以后,就可以利用Data Mining中的 Sequence Discovery 功能,找出長期的經(jīng)常性購置行為,進而促銷。,數(shù)據(jù)挖掘(DM)學(xué)科背景,統(tǒng)計學(xué),計算機科學(xué),人工智能領(lǐng)域的廣泛運用,數(shù)據(jù)挖掘(DM)常用方法,分類(classification):依照所分析對象的屬性分門別類、加以定義、建立類組(class)。,比方,將信用卡申請人分為低、中、高風(fēng)險群,或是將顧客分到事先定義好的族群。,數(shù)據(jù)挖掘(DM)常用方法,估計(e

12、stimation):根據(jù)既有的連續(xù)性數(shù)值相關(guān)屬性資料,求得某一屬性的未知值。,比方,估計家中小孩的數(shù)量、一個家庭的總收入或是不動產(chǎn)的價值。,所使用的技巧有相關(guān)分析、回歸分析及類神經(jīng)網(wǎng)絡(luò)方法。,數(shù)據(jù)挖掘(DM)常用方法,預(yù)測(prediction):根據(jù)對象屬性過去的觀察值來估計此屬性未來的值。,比方,預(yù)測哪些顧客會在未來的半年內(nèi)取消該公司的效勞,或是預(yù)測哪些電話用戶會申請增值效勞,如三方通話、語音信箱等。,所使用的技巧有回歸分析、時間序列分析及類神經(jīng)網(wǎng)絡(luò)方法。,數(shù)據(jù)挖掘(DM)常用方法,關(guān)聯(lián)分組(affinity grouping):從所有對象來決定哪些相關(guān)對象應(yīng)該放在一起。,比方,在超市中

13、,哪些物品會一起被購置,零售商可以利用關(guān)聯(lián)分組來規(guī)劃店內(nèi)商品的擺設(shè)位置,把會被一起購置的商品擺在一起。,在客戶的營銷系統(tǒng)上,此種功能可用來確認(rèn)交叉銷售(cross-selling)的時機以設(shè)計出更吸引人的產(chǎn)品群組。,聚類、群集化(clustering):將不同的母體區(qū)隔為較具同構(gòu)型的群組(cluster),換句話說,其目的是將組與組之間的差異分辨出來,并對個別組內(nèi)的相似樣本進行挑選。在群集化技術(shù)中,沒有預(yù)先定義好的類別和訓(xùn)練樣本存在,所有紀(jì)錄都根據(jù)彼此相似程度來加以歸類。,比方,在市場營銷調(diào)查前,先將顧客群集化,再來分析每群顧客最喜歡哪一類促銷,而不是對每個顧客都用相同的標(biāo)準(zhǔn)規(guī)則來分析。,所使

14、用的技巧有k-means法及agglomeration法。,SCORING&MODELING,PORTALS,DSS,EIS,ANALYSESQUERIESSCORES,APPLICATIONS,DATA HANDLE,DATASTORES,LOAD,TRANSFORM,EXTRACT,STANDARD TEMPLATE,OLAP,Agent,DM,WAREHOUSE,CRM ERP SCM Policy F&A Other,商務(wù)智能體系結(jié)構(gòu),客戶分類和特點分析,市場營銷策略分析,經(jīng)營本錢與收入分析,欺詐行為分析和預(yù)防,商務(wù)智能的應(yīng)用前景,市場預(yù)測,根據(jù)IDC分析,從1997年到2002年,整個數(shù)據(jù)倉庫市場(軟件、效勞、效勞器和存儲)以平均每年20.5的速度增長。,IDC的另一項調(diào)查結(jié)果說明,企業(yè)用于商務(wù)智能的投資回報率平均2.3年高達(dá)400。一項來自美國MetaGroup的市場分析指出,92的企業(yè)將在今后3年內(nèi)使用數(shù)據(jù)倉庫。,謝謝大家!,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!