2018秋滬科版八年級數(shù)學上冊第13章教學課件:13.1.3 三角形中幾條重要線段(共29張PPT)

上傳人:xinsh****encai 文檔編號:25471703 上傳時間:2021-07-25 格式:PPT 頁數(shù):29 大?。?.32MB
收藏 版權申訴 舉報 下載
2018秋滬科版八年級數(shù)學上冊第13章教學課件:13.1.3 三角形中幾條重要線段(共29張PPT)_第1頁
第1頁 / 共29頁
2018秋滬科版八年級數(shù)學上冊第13章教學課件:13.1.3 三角形中幾條重要線段(共29張PPT)_第2頁
第2頁 / 共29頁
2018秋滬科版八年級數(shù)學上冊第13章教學課件:13.1.3 三角形中幾條重要線段(共29張PPT)_第3頁
第3頁 / 共29頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018秋滬科版八年級數(shù)學上冊第13章教學課件:13.1.3 三角形中幾條重要線段(共29張PPT)》由會員分享,可在線閱讀,更多相關《2018秋滬科版八年級數(shù)學上冊第13章教學課件:13.1.3 三角形中幾條重要線段(共29張PPT)(29頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、13.1 三 角 形 中 的 邊 角 關 系第 13章 三 角 形 中 的 邊 角 關 系 、 命 題 與 證 明3.三角形中幾條重要線段 1.了 解 三 角 形 的 角 平 分 線 、 中 線 與 高 的 概 念 , 會 用 工具 準 確 畫 出 三 角 形 的 角 平 分 線 、 中 線 與 高 ;( 重 點 )2. 學 會 用 數(shù) 學 知 識 解 決 實 際 問 題 的 能 力 , 發(fā) 展 應 用和 自 主 探 究 意 識 , 并 培 養(yǎng) 學 生 的 動 手 實 踐 能 力 ;( 難 點 )學習目標 復習回顧導入新課 定 義 圖 示垂 線線 段中 點角 平分 線 O B AA B當 兩

2、條 直 線 相 交 所 成 的 四 個 角 中 , 有一 個 角 是 直 角 時 , 就 說 這 兩 條 直 線 互相 垂 直 , 其 中 一 條 直 線 叫 做 另 一 條 直線 的 垂 線把 一 條 線 段 分 成 兩 條 相 等 的 線 段 的 點一 條 射 線 把 一 個 角 分 成 兩 個 相 等 的角 , 這 條 射 線 叫 做 這 個 角 的 平 分 線 這 里 有 一 塊 三 角 形 的 蛋 糕 , 如 果 兄 弟 兩 個 想要 平 分 的 話 , 你 該 怎 么 辦 呢 ?情境引入 三角形的角平分線一問 題 1 如 圖 , 若 BD是 ABC的 平 分 線 ,你 能 得 到

3、什 么 結 論 ? A DCB ABD= DBC 問 題 2 如 圖 , 若 BD是 ABC的 角 平 分 線 ,你 能 得 到 什 么 結 論 ? AB CD想 一 想 : 三 角 形 的 角 平 分 線 與角 的 角 平 分 線 相 同 嗎 ?相 同 點 是 : ABD= DBC;不 同 點 是 : 前 者 是 線 段 , 后 者 是 射 線 .講授新課合作探究 ABD= DBC 問 題 4: 請 畫 出 這 個 三 角 形 的 另 外 兩 條 角 平 分 線 ,你發(fā) 現(xiàn) 了 什 么 ?三 條 角 平 分 線 交 于 一 點 AB CD EF問 題 3: 一 個 三 角 形 有 幾 條 角

4、 平 分 線 ? 3 思 考 : 觀 察 直 角 三 角 形 、 鈍 角 三 角 形 的 三 條 角 平分 線 , 你 又 有 什 么 發(fā) 現(xiàn) ?三 角 形 的 三 條 角 平 分 線 交 于 一 點 稱 之 為 三 角 形 的 內(nèi) 心 ( 后 面 學 到 ) 例 1: 如 圖 , DC平 分 ACB, DE BC, AED=80 , 求 ECD的 度 數(shù) .解 : DC平 分 ACB,又 DE BC,典例精析 AED= ACB=80 . ECD=40 . ECD= BCD= ACB.12 三角形的中線二問 題 1 如 圖 , 如 果 點 C是 線 段 AB的 中 點 , 你 能 得 到 什

5、么 結 論 ?A C BAC=BC= AB12問 題 2 如 圖 , 如 果 點 D是 線 段 BC的 中 點 , 那 么 線 段 AD稱 為 ABC的 什 么 呢 ? 類 比 一 下 . AB CD B CA三 角 形 的 中 線 AD是 ABC的 中 線 , BD = CD = BC. 在 三 角 形 中 , 連 接 一 個 頂 點 與 它 對 邊 中點 的 線 段 , 叫 做 這 個 三 角 形 的 中 線 . D21知識歸納 畫 一 畫 : 如 圖 , 分 別 畫 出 銳 角 三 角 形 、 直 角 三 角 形 、 鈍 角 三 角 形的 三 條 中 線 , 并 觀 察 它 們 中 線

6、的 交 點 有 什 么 規(guī) 律 ?u畫 圖 發(fā) 現(xiàn)三 角 形 的 三 條 中 線 交 于 三 角 形 內(nèi) 部 一 點 .這 一 點 我 們 稱 為 三角 形 的 重 心 .AB C AB C AB CD EF D DEF EFO O O 例 2 如 圖 , CD為 ABC的 AB邊 上 的 中 線 , BCD的 周長 比 ACD的 周 長 大 3cm , BC=8cm , 求 邊 AC的 長 解 : CD為 ABC的 AB邊 上 的 中 線 , AD=BD, BCD的 周 長 比 ACD的 周 長 大 3cm , ( BC+BD+CD) -( AC+AD+CD) =3, BC-AC=3, BC

7、=8, AC=5典例精析方 法 總 結 : 一 邊 上 的 中 線 把 原 三 角 形 分 成 兩 個 三 角 形 , 這 兩個 三 角 形 的 周 長 差 等 于 原 三 角 形 其 余 兩 邊 的 差 , 【 變 式 題 】 在 ABC中 , AB=AC, DB為 ABC的 中線 , 且 BD將 ABC周 長 分 為 12cm 與 15cm 兩 部 分 , 求三 角 形 各 邊 長 解 : 如 圖 , DB為 ABC的 中 線 , AD=CD,設 AD=CD=x, 則 AB=2x,當 x+2x=12, 解 得 x=4.BC+x=15, 得 BC=11.此 時 ABC的 三 邊 長 為 AB

8、=AC=8, BC=11;當 x+2x=15, BC+x=12, 解 得 x=5, BC=7,此 時 ABC的 三 邊 長 為 AB=AC=10, BC=7注 意 分類 討 論 三角形的高三問 題 1 什 么 是 三 角 形 的 高 ? 怎 樣 畫 三 角 形 的 高 ?u定 義 如 圖 , 從 ABC的 頂 點 A向 它 所 對 的 邊 BC所 在 直 線畫 垂 線 , 垂 足 為 D,所 得 線 段 AD叫 做 ABC的 邊 BC上 的 高 .問 題 2 由 三 角 形 的 高 你 能 得 到 什 么 結 論 ? ADB= ADC=90 AB CD垂 足注 意 :標 明 垂 直 的 記 號

9、 和 垂 足 的 字 母 . 高 的 敘 述 方 法 ( 如 圖 ) : 有 三 種 . AD BC,垂 足 為 D. 點 D在 BC上 , 且 BDA= CDA=90 . AD是 ABC的 高 . AB CD 銳 角 三 角 形 的 三 條 高問 題 1 每 人 畫 一 個 銳 角 三 角 形 .(1) 你 能 畫 出 這 個 三 角 形 的 三 條 高 嗎 ?(2) 這 三 條 高 之 間 有 怎 樣 的 位 置 關 系 ? O問 題 2 銳 角 三 角 形 的 三 條 高 是 在 三 角 形 的 內(nèi) 部 還 是 外 部 ?AB CD EF銳 角 三 角 形 的 三 條 高 交 于 同 一

10、 點 .銳 角 三 角 形 的 三 條 高 都 在 三 角 形 的 內(nèi) 部 .探究交流 直 角 三 角 形 的 三 條 高問 題 : 在 紙 上 畫 出 一 個 直 角 三 角 形 .(1)畫 出 直 角 三 角 形 的 三 條 高 .直 角 邊 BC邊 上 的 高 是 _;AB直 角 邊 AB邊 上 的 高 是 CB(2)它 們 有 怎 樣 的 位 置 關 系 ?斜 邊 AC邊 上 的 高 是 _.BD 直 角 三 角 形 的 三 條 高 交 于 直 角 頂 點 . A B CD EF鈍 角 三 角 形 的 三 條 高問 題 :(1) 鈍 角 三 角 形 的 三 條 高 交 于 一 點 嗎

11、?(2)它 們 所 在 的 直 線 交 于 一 點 嗎 ?鈍 角 三 角 形 的 三 條 高 不 相 交 于 一 點鈍 角 三 角 形 的 三 條 高 所 在 直 線 交 于一 點 三 角 形 的 三 條 高 的 特 性高 所 在 的 直 線 是 否 相 交高 之 間 是 否 相 交高 在 三 角 形 內(nèi) 部 的 數(shù) 量 鈍 角 三 角 形直 角 三 角 形銳 角 三 角 形3 1 1相 交 相 交 不 相 交相 交 相 交 相 交三 條 高 所 在 直 線的 交 點 的 位 置 三 角 形內(nèi) 部 直 角 頂 點 三 角 形外 部歸納總結 【 方 法 總 結 】 面 積 法 的 應 用 : 若

12、 涉 及 兩 條 高 求 長 度 , 一 般 需結 合 面 積 (但 不 求 出 面 積 ), 利 用 三 角 形 面 積 的 兩 種 不 同 表 示方 法 列 等 式 求 解 .例 3: 如 圖 所 示 , 在 ABC中 , AB AC 5, BC 6,AD BC于 點 D, 且 AD 4, 若 點 P在 邊 AC上 移 動 , 求BP的 最 小 值 .解 : 根 據(jù) 垂 線 段 最 短 , 可 知 當 BP AC時 , BP有 最 小 值 由 ABC的 面 積 公 式 可 知 , ADBC BPAC.1212代 入 數(shù) 值 , 可 解 得 BP .245 問 題 1 如 圖 所 示 , 在

13、 ABC中 , AD是 ABC的 中線 , AE是 ABC的 高 試 判 斷 ABD和 ACD的 面積 有 什 么 關 系 ? 為 什 么 ? B CD EA相 等 , 因 為 兩 個 三 角 形 等 底 同高 , 所 以 它 們 面 積 相 等 .問 題 2 通 過 問 題 1你 能 發(fā) 現(xiàn) 什 么 規(guī) 律 ?三 角 形 的 中 線 能 將 三 角 形 的 面 積 平 分 .探究交流 例 4: 如 圖 , 在 ABC中 , E是 BC上 的 一 點 , EC 2BE, 點D是 AC的 中 點 , 設 ABC, ADF和 BEF的 面 積 分 別 為S ABC, S ADF和 S BEF, 且

14、 S ABC 12, 求 S ADF S BEF的 值 . S ABD S ABE (S ADF S ABF) (S ABF S BEF) S ADF S BEF,即 S ADF S BEF S ABD S ABE 6 4 2.解 : 點 D是 AC的 中 點 , AD AC.12 S ABC 12, S ABD S ABC 6.12 EC 2BE, S ABC 12, S ABE S ABC 4.13【 方 法 總 結 】 三 角 形 的 中 線 將 三 角 形 分 成 面 積 相 等 的 兩 部 分 ; 高 相等 時 , 面 積 的 比 等 于 底 邊 的 比 ; 底 相 等 時 , 面

15、積 的 比 等 于 高 的 比 定義四觀 察 下 列 語 句 :1.無 限 不 循 環(huán) 小 數(shù) 稱 為 無 理 數(shù) ;2.兩 條 邊 相 等 的 三 角 形 叫 做 等 腰 三 角 形 ;3.三 角 形 中 , 一 個 角 的 平 分 線 與 這 個 角 對 邊 相 交 , 頂 點 與交 點 之 間 的 線 段 叫 做 三 角 形 的 角 平 分 線 .像 這 樣 能 明 確 界 定 某 個 對 象 含 義 的 語 句 叫 做 定 義 請 你 舉 出 你 所 熟 知 的 一 些 定 義 例 子 . 例 如 :1.“ 具 有 中 華 人 民 共 和 國 國 籍 的 人 ,叫 做 中 華 人 民

16、共 和 國公 民 ” 是 “ 中 華 人 民 共 和 國 公 民 ” 的 定 義 ;2. “ 兩 點 之 間 線 段 的 長 度 ,叫 做 這 兩 點 之 間 的 距 離 ” 是“ 兩 點 之 間 的 距 離 ” 的 定 義 ;3.“ 在 一 個 方 程 中 ,只 含 有 一 個 未 知 數(shù) ,并 且 未 知 數(shù) 的 指數(shù) 是 1,這 樣 的 方 程 叫 做 一 元 一 次 方 程 ” 是 “ 一 元 一 次 方程 ” 的 定 義 . 當堂練習如 果 一 個 三 角 形 的 三 條 高 的 交 點 恰 是 三 角 形 的 一 個 頂 點 , 那 么 這 個 三 角 形 是 ( )A.銳 角 三

17、 角 形 B.直 角 三 角 形 C.鈍 角 三 角 形 D.銳 角 三 角 形1.下 列 各 組 圖 形 中 , 哪 一 組 圖 形 中 AD是 ABC 的 高 ( )A D CB A BC D ABC D ABCDA B C DB D 3.如 圖 ,在 ABC中 , 1= 2,G為 AD中 點 ,延 長 BG交 AC于E,F為 AB上 一 點 ,CF AD于 H,判 斷 下 列 說 法 的 正 誤 . AB CD E1 2F GH AD是 ABE的 角 平 分 線 ( ) BE是 ABD邊 AD上 的 中 線 ( ) BE是 ABC邊 AC上 的 中 線 ( ) CH是 ACD邊 AD上

18、的 高 ( ) 4. 如 圖 , ABC中 , AD是 BC邊 上 的 中 線 , 若 ABC的 周 長為 35cm , BC=11cm , 且 ABD與 ACD的 周 長 之 差 為 3cm , 求AB與 AC的 長 .A C D B解 : AD是 ABC的 中 線 , CD=BD. ABC的 周 長 為 35cm , BC=11cm , AC+AB=35-11=24( cm ) .又 ABD與 ACD的 周 長 之 差 為 3cm , AB-AC=3, AB=13.5cm ,AC=10.5cm . 5. 如 圖 , 在 ABC中 , AD是 ABC的 高 , AE是 ABC的 角平 分 線

19、 , 已 知 BAC=82 , C=40 , 求 DAE的 大 小 .解 : AD是 ABC的 高 , ADC 90 . ADC+ C+ DAC=180 , DAC=180 ( ADC+ C) =180 90 40=50 . AE是 ABC的 角 平 分 線 , 且 BAC=82 , CAE= BAC=41 , 21 DAE= DAC CAE=50 41 = 9 .AB CD E 課堂小結三 角 形 重要 線 段 高 鈍 角 三 角 形 兩 短 邊 上 的 高 的 畫 法中 線 會 把 原 三 角 形 面 積 平 分一 邊 上 的 中 線 把 原 三 角 形 分 成 兩 個 三角 形 , 這 兩 個 三 角 形 的 周 長 差 等 于 原三 角 形 其 余 兩 邊 的 差 ,面 積 相 等角 平 分 線

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!