對移動IPv6支持的綜合高效切換程序 外文資料翻譯

上傳人:仙*** 文檔編號:28023347 上傳時間:2021-08-22 格式:DOC 頁數(shù):28 大?。?72.50KB
收藏 版權(quán)申訴 舉報 下載
對移動IPv6支持的綜合高效切換程序 外文資料翻譯_第1頁
第1頁 / 共28頁
對移動IPv6支持的綜合高效切換程序 外文資料翻譯_第2頁
第2頁 / 共28頁
對移動IPv6支持的綜合高效切換程序 外文資料翻譯_第3頁
第3頁 / 共28頁

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《對移動IPv6支持的綜合高效切換程序 外文資料翻譯》由會員分享,可在線閱讀,更多相關(guān)《對移動IPv6支持的綜合高效切換程序 外文資料翻譯(28頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 本科畢業(yè)設(shè)計(jì)(論文)外文資料翻譯 外文資料題目 A Comprehensive and Efficient Handoff Procedure for IPv6 Mobility Support對移動IPv6支持的綜合高效切換程序摘要移動 IPv6 路由優(yōu)化的切換性能取決于優(yōu)化的 IP 層自動機(jī)制,以及安排和并行化及其信號的移動節(jié)點(diǎn)的靈活性。本文提供了標(biāo)準(zhǔn)的 ipv6 協(xié)議套件和移動 IPv6切換性能綜合分析延遲的幾個來源。雖然一些拖延已是眾所周知的優(yōu)化和廣泛適用的切換方法是尚未被發(fā)現(xiàn)。本文因此繼續(xù)討論現(xiàn)有和新的優(yōu)化建議,其中一些目前正在內(nèi) IETF、標(biāo)準(zhǔn)化,并闡述如何組合的那些可以 顯著的

2、提高切換的經(jīng)驗(yàn)。1 .介紹互聯(lián)網(wǎng)服務(wù)滲透的日常生活越來越多,用戶越來越希望他們能夠在任何地點(diǎn)、任何時間使用互聯(lián)網(wǎng)。同時,實(shí)時通信的重要性正在增加,如音頻和視頻流媒體、 IP 電話、 視頻會議等實(shí)時通信都是高度敏感數(shù)據(jù)延遲,傳播延遲和切換延遲。高效地移動支持是下一代互聯(lián)網(wǎng)建設(shè)過程中的主要目標(biāo),設(shè)計(jì)和路由優(yōu)化的一種模式被納入移動 IPv6移動性協(xié)議。路由優(yōu)化允許直接路徑通過。這是補(bǔ)充路由通過固定的代理服務(wù)器,其代理移動節(jié)點(diǎn)修建的經(jīng)典的方法。當(dāng)路由優(yōu)化減少傳播延遲的同時,切換延遲仍然相當(dāng)有效地排除了有意義的實(shí)時支持。事實(shí)上,標(biāo)準(zhǔn)的 IPv6 部署中的切換延遲大約是幾秒。這不只是因?yàn)橐苿?IPv6,但

3、也會影響標(biāo)準(zhǔn) IPv6 和運(yùn)動檢測機(jī)制。非常幸運(yùn)的是,最近把大量的優(yōu)化技術(shù)提出以簡化個人切換相關(guān)的活動。測量數(shù)據(jù)證實(shí)任何特殊技術(shù)化都是有利的。但是,研究如何優(yōu)化集成到目前為止已經(jīng)很大程度上被忽視的。本文從較高的角度來看流動性檢查的挑戰(zhàn) 它解釋標(biāo)準(zhǔn)的 IPv6 部署 IP 層視野中的整體切換過程和分析方面的期望。由于結(jié)果強(qiáng)烈建議優(yōu)化,文件將繼續(xù)探索有前途的現(xiàn)有和新的建議,最近獲得了互聯(lián)網(wǎng)工程任務(wù)組 (IETF) 和學(xué)術(shù)研究界的勢頭。對他們的相互作用也計(jì)算優(yōu)化。本文建議改進(jìn)的切換性能的集成的解決方案。2 .標(biāo)準(zhǔn)切換過程 A 移動節(jié)點(diǎn)經(jīng)歷 IP 層切換,或者只需切換,當(dāng)它更改 IP 連接。這開頭鏈路

4、層附件中的變化,還鏈路層切換,后面跟著發(fā)現(xiàn)新路由器、地址、運(yùn)動檢測和 移動 IPv6 登記。圖 1 說明了這些切換的步驟,分別討論下一步了。2.1 路由器發(fā)現(xiàn) A 移動節(jié)點(diǎn)在路由器發(fā)現(xiàn)的過程中學(xué)會有關(guān)本地路由器和鏈路上的前綴。這一過程被透過松散定期上的鏈路本地節(jié)點(diǎn)的路由器多播路由器廣告郵件。IPv6 鄰居發(fā)現(xiàn) RFC 指出未經(jīng)請求的路由器廣告郵件發(fā)送 3 和 4 秒之間的隨機(jī)間隔至少和 1350年 1800年秒之間最。由于這些保守的限制旨在平穩(wěn)的節(jié)點(diǎn),而不能有意義地支持移動,移動 IPv6 RFC 減少下限,一個信標(biāo)每 30 至 70 毫秒為單位)。因此,移動節(jié)點(diǎn)可以期待收到 25 毫秒之后的

5、第一次切換的廣告,這減少了50 毫秒連續(xù)廣告之間的平均時間。另一方面,高頻率的多址廣播廣告可能是在低帶寬、 廣域網(wǎng)絡(luò),其中許多用戶可能經(jīng)常離開受同一 IP 子網(wǎng)的地理區(qū)域的問題。圖 1 顯示的廣告相關(guān)的切換過程中 ;掩蓋了其他的廣告。2.2 地址配置移動節(jié)點(diǎn)配置新的全球 IP 地址收到的未知的前綴路由器廣告郵件。這種情況通常發(fā)生符合無狀態(tài)地址自動: 移動節(jié)點(diǎn)或者隨機(jī)選擇的接口標(biāo)識符,或基于接口的 MAC 地址,及在此將添加前獲得的前綴。然后,它會發(fā)送多播偵聽程序報告消息要訂閱請求節(jié)點(diǎn)多播組相對應(yīng)的新地址。如果路由器通告消息是多播的傳輸,通常是這種情況,多播偵聽程序報告消息被延誤第二解脫與相鄰的

6、節(jié)點(diǎn),可能對相同的廣告作出的反應(yīng)。移動節(jié)點(diǎn),然后運(yùn)行重復(fù)地址檢測協(xié)議,以驗(yàn)證是否是唯一的新地址: 它傳輸?shù)刂返泥従诱埱笙?,并且,如果?1 秒的時間內(nèi)收到?jīng)]有響應(yīng),為標(biāo)志的接口的地址。如果是一個唯一的地址,因此總 期范圍 1 和 2 秒之間??赡芤言诹硪粋€節(jié)點(diǎn)使用 IPv6 地址的可能性很小,可以使其可以忽略不計(jì)。即使該鏈接本地地址保持其前綴在切換過程中,移動節(jié)點(diǎn)必須重新仍驗(yàn)證此地址的唯一性時 IP 連接更改,因?yàn)樾碌逆溌飞系墓?jié)點(diǎn)可能已經(jīng)使用相同的鏈接本地地址。這是通過另一個運(yùn)行的重復(fù)地址檢測。因?yàn)橹挥羞\(yùn)動檢測可以建立 IP 連接是否已更改,re-核查的鏈接本地地址通常運(yùn)動檢測后開始。這不是

7、顯示在圖像,但是,鑒于鏈接本地地址的可用性并不是影響其他切換活動的日程安排。2.3 運(yùn)動檢測移動節(jié)點(diǎn)執(zhí)行運(yùn)動檢測,以識別 IP 連接的更改。這種變化意味著移動節(jié)點(diǎn)選擇新的默認(rèn)路由器、 無效陳舊的全局地址,其鏈路本地地址,再核實(shí)唯一性和啟動移動 IPv6 登記。運(yùn)動檢測依賴于分析廣告路由器廣告郵件中的鏈接上前綴和可能還探討了路由器考慮關(guān)閉鏈接的可到達(dá)性。當(dāng)移動節(jié)點(diǎn)使用的前綴不再被視為刊登公告,但新的前綴 顯示相反時,移動節(jié)點(diǎn)通常決定它已移動到不同的網(wǎng)絡(luò)。另一方面,收到的前綴 也可能表示 IP 連接未改變鏈接層切換,盡管中例如,當(dāng)移動節(jié)點(diǎn)交換機(jī)連接到同一子網(wǎng)的接入點(diǎn)。運(yùn)動檢測被復(fù)雜的路由器通告消息

8、可能包含不完整集前綴 的這一事實(shí)。接待處的單個因此通常是廣告的不足,以決定是否已更改 IP 連接。它也是通常不可能確定當(dāng)廣告應(yīng)已收到,但沒有出現(xiàn),以保證的廣告時間間隔的缺乏。移動 IPv6 RFC 幫助,在這方面,它引入了路由器廣告郵件廣告時間間隔選項(xiàng)。路由器使用此選項(xiàng)可以指示對其信標(biāo)期間的上限。這是低至 70 毫秒 (參見第 2.1 節(jié)),為了計(jì)算調(diào)度中移動節(jié)點(diǎn)和路由器的粒度添加額外 20 毫秒。然后,移動節(jié)點(diǎn)期望路由器通告消息到達(dá)的最 90 毫秒的時間間隔。不過,沒有一種單一的預(yù)期廣告仍然并不意味著變化可能給數(shù)據(jù)包丟失的 IP 連接。三個丟失的廣告更可靠地表明運(yùn)動。然后決定最 270 毫秒

9、后從舊的默認(rèn)路由器接收到最后的廣告。實(shí)際的鏈路層切換稍后就會出現(xiàn)最多 70 毫秒,以便運(yùn)動檢測可以采取任何 200 和 270 毫秒之間的時間。平均而言,從舊的默認(rèn)路由器的最后一個廣告的接待和鏈路層切換期間是 25 毫秒,收益率平均運(yùn)動檢測 245 毫秒的延遲。2.4 移動IPV6注冊移動 IPv6 注冊后地址 和運(yùn)動檢測移動節(jié)點(diǎn)選擇其新的全球地址注冊轉(zhuǎn)交地址作為其家鄉(xiāng)代理和對應(yīng)的節(jié)點(diǎn)之一。這樣就建立關(guān)懷的地址與移動節(jié)點(diǎn)的家鄉(xiāng)地址,已從家鄉(xiāng)代理的網(wǎng)絡(luò)的前綴和跨運(yùn)動保持穩(wěn)定之間的綁定。住宅地址 IP 之上的堆棧層用作終點(diǎn) 鑒定的一部分。與同行交流的移動節(jié)點(diǎn)的數(shù)據(jù)包有 IP 報頭中的護(hù)理的地址和在

10、電線上的 IPv6 擴(kuò)展標(biāo)頭中的家庭住址。同時結(jié)束節(jié)點(diǎn)交換地址時遍歷的數(shù)據(jù)包的 IP 層這樣的運(yùn)輸協(xié)議和應(yīng)用程序可以訪問的住址,像往常一樣。圖 1 說明了家鄉(xiāng)代理和記者的單個節(jié)點(diǎn)的移動 IPv6 的注冊過程。首頁注冊包含綁定更新消息的通告新轉(zhuǎn)交地址和綁定確認(rèn)的一條消息,指示成功或失敗的家鄉(xiāng)代理。必須注意防止非法綁定,哪些惡意的節(jié)點(diǎn)可以嘗試模擬或重定向的目的建立基于洪水。移動節(jié)點(diǎn)和家鄉(xiāng)代理通常根據(jù)相同的管理和共享憑據(jù),以引導(dǎo) IPsec 安全關(guān)聯(lián)。首頁注冊可以因此被身份驗(yàn)證和加密。記者注冊允許路由優(yōu)化。它包括傳達(dá)對應(yīng)的節(jié)點(diǎn),并響應(yīng)的綁定的確認(rèn)新轉(zhuǎn)交地址的綁定更新消息。這些無法一般保護(hù)通過 IPs

11、ec,不過,因?yàn)橐苿庸?jié)點(diǎn)均可能要共享的身份驗(yàn)證憑據(jù),他們可能在某一時刻的所有相應(yīng)節(jié)點(diǎn)進(jìn)行溝通,也不是全局公鑰基礎(chǔ)結(jié)構(gòu),可任意對的節(jié)點(diǎn),才能投入存在任何時間很快 。記者注冊而是通過身份驗(yàn)證和授權(quán)通過返回路徑能力的程序,基于非加密的家庭和照顧的地址在移動節(jié)點(diǎn)的可訪問性的核查。在這兩個地址可達(dá)憑移動節(jié)點(diǎn),以啟動地址之間的綁定。家庭地址測試中,移動節(jié)點(diǎn)隧道主測試初始化消息到家鄉(xiāng)代理,將轉(zhuǎn)發(fā)到通信節(jié)點(diǎn)的消息。通信節(jié)點(diǎn)返回到首頁測試郵件內(nèi)的家庭住址的不可預(yù)知的家庭關(guān)鍵一代令牌。家鄉(xiāng)代理截獲此消息和隧道它到移動節(jié)點(diǎn)。護(hù)理的地址測試是移動節(jié)點(diǎn)和通信節(jié)點(diǎn)之間的直接交流。它包括照顧的測試初始化消息和照顧的測試消息

12、具有不可預(yù)知的護(hù)理的關(guān)鍵一代令牌。國內(nèi)外護(hù)理的關(guān)鍵一代標(biāo)記的知識證明分別接收數(shù)據(jù)包的家庭住址和照顧的地址,在移動節(jié)點(diǎn)的能力。移動節(jié)點(diǎn)通過使用來自這兩個標(biāo)記密鑰驗(yàn)證通信節(jié)點(diǎn)的綁定更新消息演示了這方面的知識。通信節(jié)點(diǎn)使用相同的密鑰進(jìn)行身份驗(yàn)證的最后綁定的確認(rèn)消息。移動 IPv6 RFC 葉片對調(diào)度信號和數(shù)據(jù)包中移動節(jié)點(diǎn)的自由。圖 1 顯示了一個保守的移動節(jié)點(diǎn),等待來自家鄉(xiāng)代理的綁定的確認(rèn)消息之前它啟動的返回路徑能力的過程。與此相反,樂觀的移動節(jié)點(diǎn)并行執(zhí)行首頁注冊和回報擊潰能力的過程。樂觀的移動節(jié)點(diǎn)而且開始發(fā)送數(shù)據(jù)包到通信節(jié)點(diǎn)等通信節(jié)點(diǎn)的綁定更新消息已在路上,而保守的移動節(jié)點(diǎn)接收的確認(rèn)后,才使用的新

13、的護(hù)理的地址。在任一情況下,直到它接收到的綁定更新消息,不知道有新的轉(zhuǎn)交地址的通信節(jié)點(diǎn)。rst 數(shù)據(jù)包發(fā)送到新的護(hù)理的地址將因此會送交移動大約隨綁定的確認(rèn)消息,假設(shè)這一要求移動節(jié)點(diǎn)的節(jié)點(diǎn)。首頁注冊失敗的情況下,保守的移動節(jié)點(diǎn)避免無用的返回路徑能力的過程。他們亦不可能不久后丟失或被拒絕的綁定更新消息發(fā)送的數(shù)據(jù)包的丟失。對應(yīng)的節(jié)點(diǎn)將丟棄這些安全措施綁定不匹配的面孔的數(shù)據(jù)包。這是額外的切換延遲為代價的當(dāng)兩次注冊成功。傳出路由優(yōu)化的包,這是移動節(jié)點(diǎn)和家鄉(xiāng)代理加移動節(jié)點(diǎn)和通信節(jié)點(diǎn)之間的往返時間之間的往返時間。傳入的數(shù)據(jù)包,額外的切換延遲是移動節(jié)點(diǎn)和家鄉(xiāng)代理之間的往返時間。樂觀的移動節(jié)點(diǎn)性能更好,一般情況

14、下。但他們可能白費(fèi)嘗試返回路徑能力過程或有包損失應(yīng)家庭或代理注冊失敗。3 .基于現(xiàn)有條件的解決方法現(xiàn)有和改善的切換性能的標(biāo)準(zhǔn)切換過程可以顯著延遲損害質(zhì)量的實(shí)時應(yīng)用程序,即使路由優(yōu)化設(shè)計(jì)意圖改善建議方法對這些應(yīng)用程序支持。研究社會一直在努力減少一些時候的切換延遲,并取得了多項(xiàng)建議。特別是有前途的是下列方法。3.1 路由器發(fā)現(xiàn)更復(fù)雜的調(diào)度路由器中的時間間隔可以提高路由器發(fā)現(xiàn)對帶寬消耗和限度地優(yōu)化。加快融入允許移動節(jié)點(diǎn)請求立即的廣告。當(dāng)移動節(jié)點(diǎn)的鏈路層可以指示在網(wǎng)絡(luò)連接中的更改時,這非常有用。基于鏈路上的路由器的鏈接本地地址和請求的來源地址,每個路由器自主計(jì)算動態(tài)的排名,指示路由器應(yīng)響應(yīng)立即和可能的

15、其它路由器應(yīng)該不久發(fā)送更多的廣告。快速路由器發(fā)現(xiàn)建議接入點(diǎn)重播高速緩存的路由器廣告郵件,一旦相關(guān)聯(lián)的節(jié)點(diǎn)。這種網(wǎng)絡(luò)一側(cè)的鏈路層支持消除了在移動節(jié)點(diǎn)的鏈路層觸發(fā)器的要求。3.2 地址配置為了避免手關(guān)閉造成的延誤標(biāo)準(zhǔn)重復(fù)地址檢測,取得了地址 不同的提案。IPv6 工作組內(nèi)的 IETF 正在樂觀重復(fù)地址檢測 ,它允許有限使用可能重復(fù)的 IP 地址。移動節(jié)點(diǎn)暫時更改的規(guī)則,他們做了 IPv6 鄰居發(fā)現(xiàn),以免污染可能是非法的地址解析信息與其他節(jié)點(diǎn)的鄰居高速緩存的信號。先進(jìn)的重復(fù)地址檢測,路由器生成,他們再分配給移動節(jié)點(diǎn)的唯一地址的池。重復(fù)地址檢測執(zhí)行地址上提前這樣,移動節(jié)點(diǎn)可以配置他們立即無需驗(yàn)證自己的

16、唯一性。3.3 運(yùn)動檢測 DNA 內(nèi) IETF 工作組處理慢運(yùn)動檢測的兩種互補(bǔ)的方法的問題。前綴的完整列表協(xié)議適用于路由器。移動節(jié)點(diǎn)維護(hù)學(xué)術(shù)上鏈接前綴,可能獲得多個路由器通告消息接收的列表。列表中已經(jīng)成熟了一會兒后,移動節(jié)點(diǎn)可以假定更改 IP 連接高概率時新收到的廣告僅包含列表中沒有的前綴。這種預(yù)測基于可能不完整的信息,所以移動節(jié)點(diǎn)可能會在沒有實(shí)際發(fā)生時,甚至斷言運(yùn)動。DNA 協(xié)議使用加快融入及時傳輸?shù)恼埱舐酚善鲝V告郵件。路由器選擇某些前綴作為鏈接標(biāo)識符,并為此所顯示的所有傳播廣告中。這允許移動節(jié)點(diǎn),可靠地檢測中基于單個廣告的 IP 連接的更改。另外,移動節(jié)點(diǎn)可以顯式檢查路由器征集廣告交換的一

17、部分用于前的鏈路層切換,因此稱為一個里程碑,網(wǎng)絡(luò) prex 是否仍有效的可能是新的鏈接。DNA 協(xié)議作為鏈接與舊式的路由器的回退機(jī)制集成了 前綴的完整列表。3.4 移動 IPv6 優(yōu)化許多移動 IPv6 優(yōu)化減少路由優(yōu)化的切換延遲,通過修改程序的返回路徑的能力。早期綁定更新和基于信用的授權(quán)的組合達(dá)到這一點(diǎn),對純粹的端到端的基礎(chǔ),具有以下四個組成優(yōu)化: 1。 主動家庭地址測試: 移動節(jié)點(diǎn)主動的家庭地址測試期間獲取未來的切換回家的注冊機(jī)里的標(biāo)記。這關(guān)鍵的切換期間保存通過家鄉(xiāng)代理可能長的往返行程。移動節(jié)點(diǎn)可以調(diào)用只是時間的基礎(chǔ)上積極家庭地址測試,如果其鏈路層提供指示即將切換,觸發(fā)器或定期每當(dāng)最近取得

18、的最大主關(guān)鍵一代令牌將過期。2.同時照顧的地址測試: 數(shù)據(jù)包可以已交換,在有限的程度上,通過新的護(hù)理的地址,而在該轉(zhuǎn)交地址移動節(jié)點(diǎn)的可達(dá)性正在北朝鮮。3.試綁定: 移動節(jié)點(diǎn)注冊其家鄉(xiāng)地址與地址未經(jīng)核實(shí)的護(hù)理的暫定綁定通過交換與通信節(jié)點(diǎn)的早期綁定更新和早期綁定的確認(rèn)消息。僅以家庭的關(guān)鍵一代令牌索取最近的主動家庭地址測試,從而促進(jìn)后續(xù)的并行的護(hù)理的地址測試情況下,消息進(jìn)行身份驗(yàn)證。一旦移動已執(zhí)行并行的護(hù)理的地址測試,它對標(biāo)準(zhǔn)的綁定更新消息進(jìn)行身份驗(yàn)證,并與通信節(jié)點(diǎn)注冊北朝鮮轉(zhuǎn)交地址。4.家庭和記者注冊的并行 移動 IPv6規(guī)格不允許綁定更新消息發(fā)送到對應(yīng)的節(jié)點(diǎn)之前確認(rèn)收到來自家鄉(xiāng)代理, 移動節(jié)點(diǎn)。

19、如果結(jié)合的主動家庭地址測試和并發(fā)護(hù)理的地址測試隱藏程序的返回路徑能力滯后時間,這就會成為性能問題。移動 IPv6 的規(guī)則因此放寬,以允許移動節(jié)點(diǎn),早期綁定更新的訊息,首頁注冊時仍然掛起。著名安全指引禁止向的可達(dá)性尚未北朝鮮轉(zhuǎn)交地址發(fā)送數(shù)據(jù)包的通信節(jié)點(diǎn)。這是防范惡意,否則可能誘供水請求數(shù)據(jù)包的第三方對應(yīng)的節(jié)點(diǎn)的節(jié)點(diǎn)。這種基于重定向的洪水攻擊的吸引力是工藝擴(kuò)大的潛力。例如,攻擊者可以完成初始的 TCP 握手,自己地址 (或家庭住址,這件事),通過大量大 128gb 下載,然后將排放重定向到其受害者的地址。攻擊者可能,并會,以基于它在初始握手期間學(xué)到的序列號的受害者的名義欺騙確認(rèn)。但確認(rèn)將小比作通信

20、節(jié)點(diǎn)生成的數(shù)據(jù)段?;谛庞玫氖跈?quán)防止基于重定向的放大的洪水攻擊,但可以通過為核實(shí)轉(zhuǎn)交地址的雙向通信。通信節(jié)點(diǎn)維護(hù)一個字節(jié)計(jì)數(shù)器的移動節(jié)點(diǎn),也稱為移動節(jié)點(diǎn)的信貸,從移動節(jié)點(diǎn)接收的數(shù)據(jù)量的增加而減少發(fā)送到移動節(jié)點(diǎn)的轉(zhuǎn)交地址是未核實(shí)的數(shù)據(jù)量。指數(shù)老化保證現(xiàn)有信貸表示只最近收到移動節(jié)點(diǎn)的數(shù)據(jù)。當(dāng)通信節(jié)點(diǎn)的移動節(jié)點(diǎn)的數(shù)據(jù)包時,發(fā)送至轉(zhuǎn)交地址如果地址是北朝鮮,或者該地址是未核實(shí),但數(shù)據(jù)包的大小不超過當(dāng)前可用的信貸。否則為通信節(jié)點(diǎn)可能丟棄數(shù)據(jù)包、 緩沖它直到轉(zhuǎn)交地址變已查清,或?qū)⑵浒l(fā)送給家鄉(xiāng)的地址。其他路線優(yōu)化增強(qiáng)功能需要某種形式的預(yù): 端節(jié)點(diǎn)共享密鑰或安全關(guān)聯(lián),更多的效率,引導(dǎo)的憑據(jù),并加密的身份驗(yàn)證可以

21、取代家庭地址測試。這兩項(xiàng)建議目前正在討論中,IETF,預(yù)配置與共享、 秘密身份驗(yàn)證密鑰的移動節(jié)點(diǎn)和對應(yīng)的節(jié)點(diǎn)。使用 IPsec 和互聯(lián)網(wǎng)密鑰交換協(xié)議。這些技術(shù)患可擴(kuò)展性問題,但是,鑒于端節(jié)點(diǎn)必須設(shè)置使用成對的憑據(jù)。此外,技術(shù)都提供了核查的移動節(jié)點(diǎn)的可訪問性,所以都不能從技術(shù)上講沒有照顧的地址測試。端節(jié)點(diǎn)對等方的可訪問性的信任并可進(jìn)一步忽略照顧的地址測試,但這種信任是在很多重要的商業(yè)模式中不可用。例如,移動電話運(yùn)營商可能能夠用秘密身份驗(yàn)證密鑰,配置訂閱服務(wù)器,但可能無法償還所有訂閱服務(wù)器使用這些注冊表項(xiàng),以可靠的方式。移動 IPv6 優(yōu)化的另一家基于移動節(jié)點(diǎn)的訪問網(wǎng)絡(luò)中的路由器支持。在快速切換的

22、移動 IPv6正在部署,移動節(jié)點(diǎn)可以請求其當(dāng)前的默認(rèn)路由器建立雙向隧道到一個新的護(hù)理的地址。這同時允許暫時溝通通過其舊的轉(zhuǎn)交地址后切換,和注冊新的照顧其家鄉(xiāng)代理地址的移動節(jié)點(diǎn)和對應(yīng)的節(jié)點(diǎn)。代理路由器發(fā)現(xiàn)和輔助的地址的幫助,移動節(jié)點(diǎn)可能會要求隧道之前切換,只要它可以預(yù)測變動。附加功能優(yōu)化的意外的鏈接中斷的情況下無功的切換管理。與此相反,媒體獨(dú)立預(yù)身份驗(yàn)證使用舊的轉(zhuǎn)交地址和一個新的默認(rèn)路由器之間的雙向隧道。移動節(jié)點(diǎn)分配新轉(zhuǎn)交地址從遠(yuǎn)程和影響家庭和記者注冊之前,它將更改鏈接。如果相鄰單元格之間的重疊是充分的大允許切換準(zhǔn)備工作及時完成,化的這種做法是類似的快速切換。然而,細(xì)胞重疊在哪里小相對于節(jié)點(diǎn)的速

23、度,推遲全球后切換到一個階段信號是有利,因?yàn)闊o線信號質(zhì)量則通常更高和更持久。媒體獨(dú)立預(yù)身份驗(yàn)證的力量是進(jìn)行預(yù)身份驗(yàn)證切換之前,新的網(wǎng)絡(luò)移動節(jié)點(diǎn)的能力。分層移動 IPv6可以綁定到一個更穩(wěn)定的區(qū)域護(hù)理的地址的其當(dāng)前的鏈路上照顧的地址從移動錨點(diǎn)網(wǎng)絡(luò)的移動節(jié)點(diǎn)位于其他位置訪問域中。移動節(jié)點(diǎn)發(fā)送和接收數(shù)據(jù)包通過雙向隧道本身和移動錨點(diǎn)之間的區(qū)域護(hù)理的地址。它對應(yīng)的節(jié)點(diǎn),家鄉(xiāng)代理注冊的區(qū)域轉(zhuǎn)交地址,并更新移動錨點(diǎn),每當(dāng)運(yùn)動后的變化及其對鏈接的地址。運(yùn)動可以使隱藏從家鄉(xiāng)代理和對應(yīng)的節(jié)點(diǎn),只要移動節(jié)點(diǎn)在同一移動錨點(diǎn)領(lǐng)域內(nèi)的山巔。5. 結(jié)論高效端到端切換需要優(yōu)化,不僅為移動性協(xié)議,路由器發(fā)現(xiàn)、地址和運(yùn)動檢測。在

24、今天的 IPv6 協(xié)議標(biāo)準(zhǔn),探討了自己的缺點(diǎn)和各種現(xiàn)有的優(yōu)化,審查這些交互,以及如何可以將它們合并到一個完整和高效的移動解決方案。它是必須認(rèn)識到明天的流動性支持的基礎(chǔ)是今天提交。這尤其適用于路徑的優(yōu)化,并需要從兩個同行的支持,因此取決于相應(yīng)的節(jié)點(diǎn)中實(shí)現(xiàn)了堅(jiān)實(shí)的基礎(chǔ)。因此應(yīng)包括路由優(yōu)化功能早期新興 IPv6 堆棧。增強(qiáng)功能還必須訪問路由器,其響應(yīng)能力至關(guān)重要的高效IPv6 和運(yùn)動檢測到他們的方式。越早的必要優(yōu)化的一組被廣泛接受這套將最終的可能性會無處不支持。A Comprehensive and Efficient Handoff Procedure for IPv6 Mobility Supp

25、ortAbstractHandoff performance with Mobile IPv6 Route Optimization strongly depends on the efciency of IP-layer autoconguration mechanisms as well as the exibility of mobile nodes to schedule and parallelize their signaling. This paper provides a comprehensive analysis of the handoff performance wit

26、h the standard IPv6 protocol suite and Mobile IPv6, and it identies several sources for delay. While some of the delays are already well known, an optimized and widely applicable handoff approach is yet to be found. The paper hence proceeds to discuss existing and new optimization proposals, some of

27、 which are currently under standardization within the IETF, and elaborates how a combination of those can signicantly improve handoff experience.1.IntroductionAs Internet-based services pervade daily life more and more, users increasingly desire them to be accessible at any place and any time. At th

28、e same time grows the importance of real-time communications 19 such as audio and video streaming, IP telephony, or video conferencing. Realtime communications are highly delay-sensitive and exhibit a susceptibility to long propagation latencies and handoff delays. Efcient mobility support was hence

29、 amongst the primary objectives during the design of the next-generation Internet, and a mode for Route Optimization was incorporated into the Mobile IPv6 9 mobility protocol. Route Optimization allows peers to communicate via a direct path.This complements the classic approach of routing a mobile n

30、odes trafc through a stationary proxy, its home agent.While Route Optimization mitigates the problem withpropagation latencies, handoff delays are still substantial enough to effectively preclude meaningful real-time support 2, 12, 13. In fact, handoff delays in a standard IPv6 deployment are in the

31、 order of seconds. This is not only due to Mobile IPv6, but also affects standard IPv6 conguration and movement-detection mechanisms 15, 24.Very fortunately, a multitude of optimization techniques3, 5, 10, 14, 18 have recently been put forth to streamline individual handoff-related activities. Measu

32、rement data is typically available to corroborate the benets of any specic technique. But a study of how well the optimizations integrate has so far been largely neglected 1.This paper examines the challenges with mobility from a higher perspective: It explains the overall handoff procedure in a sta

33、ndard IPv6 deployment from an IP layers perspective and analyzes inhowfar it falls short of expectations. Since the results strongly advise optimization, the paper proceeds to explore promising existing and new proposals that have recently gained momentum in both in the Internet Engineering Task For

34、ce (IETF) and the academic research community. The optimizations are also evaluated with respect to their interactions. The paper nally proposes an integrated solution for improved handoff performance.2. Standard Handoff ProcedureA mobile node undergoes an IP-layer handoff, or simply a handoff, when

35、 it changes IP connectivity. This begins with a change in link-layer attachment, also referred to as a link-layer handoff, and is followed by the discovery of newrouters, address conguration, movement detection, and nally Mobile IPv6 registrations. Figure 1 illustrates these handoff steps, which are

36、 separately discussed next.2.1 Router DiscoveryA mobile node learns about local routers and on-link prexes during router discovery. This process is facilitated through Router Advertisement messages, which routers multicast to link-local nodes on a loosely periodic basis.The IPv6 Neighbor Discovery R

37、FC 16 states that unsolicited Router Advertisement messages are to be sent in random intervals of between 3 and 4 seconds at least and between 1350 and 1800 seconds at most. Since these conservative limits are tailored towards stationary nodes and fail to meaningfully support mobility, the Mobile IP

38、v6 RFC decreases the lower bound to one beacon every 30 to 70 milliseconds. This reduces the mean time between successiveadvertisements to 50 milliseconds so that a mobile node can expect to receive the rst post-handoff advertisement after 25 milliseconds. On the other hand, high frequencies for mul

39、ticast advertisements may be an issue in low-bandwidth,wide-area networks, where many users may not frequently leave the geographic area covered by the same IP subnet.2.2 Address CongurationA mobile node congures a new global IP address upon receipt of a Router Advertisement message with an unknown

40、prex. This typically happens in compliance with Stateless Address Autoconguration 22: The mobile node chooses an interface identier, either randomly or based on the interfaces MAC address, and prepends to this the obtained prex. It then sends aMulticast Listener Report message 4 to subscribe to the

41、solicited-node multicast group corresponding to the new address. If the Router Advertisement message was a multicast transmission, which usually is the case, the Multicast Listener Report message is de-layed by up to 1 second to desynchronize with neighboring nodes that may be reacting to the same a

42、dvertisement. The mobile node then runs the Duplicate Address Detection protocol to verify whether the new address is unique: It transmits a Neighbor Solicitation message for the address and, if no responses are received within a period of 1 second, assigns the address to the interface. The total co

43、nguration period hence ranges between 1 and 2 seconds if the address is unique. The probability for an IPv6 address to already be in use by another node is small enough to make it negligible. Even though the link-local address keeps its prex during handoff, the mobile node must still re-verify uniqu

44、eness of this address when IP connectivity changes, because a node on the new link may already be using the same linklocal address. This is done through another run of Duplicate Address Detection.Since only movement detection can establish whether IP connectivity has changed, re-verication of the li

45、nk-local address typically begins after movement detection. This is not shown in gure 1, however, given that the availability of the link-local address does not inuencethe schedule for other handoff-related activities.2.3 Movement Detection Mobile nodes implement movement detection to recog-nize cha

46、nges in IP connectivity. Such a change implies that a mobile node chooses a new default router, invalidates stale global addresses, re-veries uniqueness of its link-local address, and initiates Mobile IPv6 registrations. Movement detection relies on analyzing the on-link prexes advertised in Router

47、Advertisement messages and possibly also probing reachability of routers considered off-link. When the prexes in use by the mobile node are no longer seen to be advertised, but new prexes show up instead, the mobile node typically decides that it has moved to a different network. On the other hand,

48、received prexes may also indicate that IP connectivity did not change in spite of a linklayer handoff, e.g., when the mobile node switches access points that connect to the same subnet. Movement detection is complicated by the fact that Router Advertisement messages may include incompletesets of pre

49、xes. Reception of a single advertisement is therefore usually insufcient to decide whether IP connectivity has changed. It is also generally impossible to determine when an advertisement should have been received,but did not appear, due to the lack of a guaranteed advertisement interval. The Mobile

50、IPv6 RFC helps in this respect in that it introduces an Advertisement Interval option for Router Advertisement messages. Routers use this option to indicate an upper bound on their beaconing periods. Wherethis is as low as 70 milliseconds (cf. section 2.1), an extra 20 milliseconds are added in orde

51、r to account for scheduling granularities in mobile nodes and routers. Mobile nodes then expect Router Advertisement messages to arrive in intervals of at most 90 milliseconds.Nevertheless, the absence of a single expected advertisement still does not imply a change in IP connectivity given the pote

52、ntial for packet loss. Three missing advertisements indicate movement more reliably. A decision can then be made at most 270 milliseconds after the last advertisement was received from the old default router. The actual linklayer handoff may occur up to 70 milliseconds later, so movement detection c

53、an take any time between 200 and 270 milliseconds. On average, the period between reception of the last advertisement from the old default router and the link-layer handoff is 25 milliseconds, yielding a mean movement-detection delay of 245 milliseconds.2.4 Mobile IPv6 RegistrationAfter address cong

54、uration and movement detection, the mobile node selects one of its new global addresses to be registered as a care-of address with its home agent and correspondent nodes. This establishes a binding between the care-of address and the mobile nodes home address, which has a prex from the home agents n

55、etwork and remains stable across movements. The home address is used at stack layers above IP as part of end-point identication. Data packets that a mobile node exchanges with a peer have the care-of address in the IP header and the home address in an IPv6 extension header while on the wire. Both en

56、d nodes swap the addresses when a packet traverses the IP layer so that transport protocols and applications can access the home address as usual.Figure 1 illustrates the Mobile IPv6 registration procedure for the home agent and a single correspondent node.The home registration consists of a Binding

57、 Update message which noties the home agent of the new care-of address, and a Binding Acknowledgment message indicating success or failure. Care must be taken to preclude illegitimate bindings 17, which malicious nodes could attempt to establish for the purpose of impersonation or redirectionbased o

58、oding. The mobile node and the home agent arebtypically under the same administration and pre-share credentials to bootstrap an IPsec security association. The home registration can so be authenticated and encrypted.The correspondent registration permits Route Optimization. It includes a Binding Upd

59、ate message that conveys the new care-of address to the correspondent node, and a responding Binding Acknowledgment message2. Thesecannot generally be protected through IPsec, however, because mobile nodes are neither likely to share authentication credentials with all correspondent nodes they may a

60、t some point communicate with, nor is a ”global” public-key infrastructure, available for arbitrary pairs of nodes, expected to come into existence any time soon 17. Correspondent registrations are instead authenticated and authorized through a return-routability procedure, based on non-cryptographi

61、c verication of a mobile nodes reachability at the home and care-of addresses. Reachability at both addresses entitles the mobile node to initiate a binding between the addresses.For the home-address test, the mobile node tunnels a Home Test Init message to the home agent, which forwards the message

62、 to the correspondent node. The correspondent node returns an unpredictable home keygen token to the home address within a Home Test message. The home agent intercepts this message and tunnels it to the mobile node. The care-of-address test is a direct exchange between the mobile node and the corres

63、pondent node. It consists of a Care-of Test Init message and a Care-of Test message with an unpredictable care-of keygen token. Knowledge of the home and care-of keygen tokens proves the mobile nodes ability to receive packets at the home address and care-ofaddress, respectively. The mobile node dem

64、onstrates thisknowledge by authenticating the Binding Update message for the correspondent node with a key derived from both tokens. The correspondent node uses the same key to authenticate the nal Binding Acknowledgment message.TheMobile IPv6 RFC leaves mobile nodes liberties withn respect to sched

65、uling signaling and data packets. Figure1 shows a conservative mobile node, which waits for the Binding Acknowledgment message from the home agent before it initiates the return-routability procedure. In contrast, an optimistic mobile node executes the home registration and the return-routability procedure in parallel. An optimistic mobile node furthermore starts sending packets to the correspondent node as soon as the Binding Update message for the correspon

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!