高考數(shù)學復習:第七章 :第二節(jié)空間幾何體的表面積和體積突破熱點題型

上傳人:仙*** 文檔編號:40847797 上傳時間:2021-11-17 格式:DOC 頁數(shù):6 大?。?35KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學復習:第七章 :第二節(jié)空間幾何體的表面積和體積突破熱點題型_第1頁
第1頁 / 共6頁
高考數(shù)學復習:第七章 :第二節(jié)空間幾何體的表面積和體積突破熱點題型_第2頁
第2頁 / 共6頁
高考數(shù)學復習:第七章 :第二節(jié)空間幾何體的表面積和體積突破熱點題型_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學復習:第七章 :第二節(jié)空間幾何體的表面積和體積突破熱點題型》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學復習:第七章 :第二節(jié)空間幾何體的表面積和體積突破熱點題型(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、△+△2019年數(shù)學高考教學資料△+△ 第二節(jié) 空間幾何體的表面積和體積 考點一 空間幾何體的表面積   [例1] (1)某三棱錐的三視圖如圖所示,該三棱錐的表面積是(  ) A.28+6 B.30+6 C.56+12 D.60+12 (2)一個幾何體的三視圖如圖所示,則該幾何體的表面積為________. [自主解答] (1)該三棱錐的直觀圖如圖所示.據(jù)俯視圖知,頂點P在底面上的投影D在棱AB上,且∠ABC=90,[來源:] 據(jù)正、俯視圖知,AD=2,BD=3,PD=4, 據(jù)側(cè)

2、視圖知,BC=4. 綜上所述,可知BC⊥平面PAB, PB==5, PC===, AC==, PA==2. ∵PC=AC=, ∴△PAC的邊PA上的高為 h= =6. ∴S△PAB=ABPD=10,S△ABC=ABBC=10, S△PBC=PBBC=10,S△APC=PAh=6. 故三棱錐的表面積為 S△PAB+S△ABC+S△PBC+S△APC=30+6. (2)該幾何體的直觀圖如圖所示: 該幾何體為長為4,寬為3,高為1的長方體內(nèi)部挖去一個底面半徑為1,高為1的圓柱. ∴S表=2(4+3+12)+2π-2π=38. [答案] (1)B (2)

3、38 【方法規(guī)律】 空間幾何體的表面積的求法技巧 (1)多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理. (2)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和. 一個幾何體的三視圖如圖所示,該幾何體的表面積是(  ) A.372 B.360 C.292 D.280 解析:選B 由三視圖可知該幾何體是由下面一個長方體,上面一個長方體組合而成的幾何體. ∵下面長方體的表面積為8102+282+1022=232,上面長方體的表面積為862+282+262

4、=152, 又∵長方體表面積重疊一部分, ∴幾何體的表面積為232+152-262=360. 高頻考點 考點二 空間幾何體的體積   1.空間幾何體的體積是每年高考的熱點,題型既有選擇題、填空題,也有解答題,難度偏小,屬容易題. 2.高考對空間幾何體的體積的考查常有以下幾個命題角度: (1)求簡單幾何體的體積; (2)求組合體的體積; (3)求以三視圖為背景的幾何體的體積. [例2] (1)(2013湖北高考)一個幾何體的三視圖如圖所示,該幾何體從上到下由四個簡單幾何體組成,其體積分別記為V1,V2,V3,V4,上面兩個簡單幾何體均為旋轉(zhuǎn)體,下面兩個簡單幾

5、何體均為多面體,則有(  ) A.V1<V2<V4<V3 B.V1<V3<V2<V4 C.V2<V1<V3<V4 D.V2<V3<V1<V4 (2)(2013浙江高考)已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是(  ) A.108 cm3 B.100 cm3 C.92 cm3 D.84 cm3 (3)(2012江蘇高考)如圖所示,在長方體ABCD A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,則四棱錐ABB1D1D的體積為________

6、cm3. [自主解答] (1)由題意可知,由于上面兩個簡單幾何體均為旋轉(zhuǎn)體,下面兩個簡單幾何體均為多面體.根據(jù)三視圖可知,最上面一個簡單幾何體是上底面圓的半徑為2,下底面圓的半徑為1,高為1的圓臺,其體積V1=π(12+22+12)1=π;從上到下的第二個簡單幾何體是一個底面圓半徑為1,高為2的圓柱,其體積V2=π122=2π;從上到下的第三個簡單幾何體是邊長為2的正方體,其體積V3=23=8;從上到下的第四個簡單幾何體是一個棱臺,其上底面是邊長為2的正方形,下底面是邊長為4的正方形,棱臺的高為1,故體積V4=(22+24+42)1=,比較大小可知答案選C. (2)根據(jù)幾何體的三視圖可

7、知,所求幾何體是一個長方體截去一個三棱錐,則幾何體的體積V=663-443=100 cm3. (3)由題意,四邊形ABCD為正方形,連接AC,交BD于O,則AC⊥BD.由面面垂直的性質(zhì)定理,可證AO⊥平面BB1D1D.四棱錐底面BB1D1D的面積為32=6,從而VABB1D1D=OAS長方形BB1D1D=6. [答案] (1)C (2)B (3)6 空間幾何體體積問題的常見類型及解題策略 (1)求簡單幾何體的體積.若所給的幾何體為柱體、錐體或臺體,則可直接利用公式求解. (2)求組合體的體積.若所給定的幾何體是組合體,不能直接利用公式求解,則常用轉(zhuǎn)換法、分割法、補形法等進行求解.

8、 (3)求以三視圖為背景的幾何體的體積.應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解. 1.(2013廣東高考)某四棱臺的三視圖如圖所示,則該四棱臺的體積是(  ) A.4 B. C. D.6 解析:選B 由四棱臺的三視圖可知,臺體上底面積S1=11=1,下底面積S2=22=4,高h=2,代入臺體的體積公式V=(S1++S2)h=(1++4)2=. 2.一幾何體的三視圖如圖所示,則該幾何體的體積為(  ) A.200+9π B.200+18π C.140+9π

9、 D.140+18π 解析:選A 這個幾何體由上、下兩部分組成,下半部分是一個長方體,其中長、寬、高分別為6+2+2=10,1+2+1=4,5;上半部分是一個橫放的半圓柱,其中底面半徑為=3,母線長為2,故V=1045+π322=200+9π. 考點三 與球有關(guān)的組合體   [例3] (2014沈陽模擬)已知直三棱柱ABCA1B1C1的6個頂點都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為(  ) A. B.2 C. D.3 [自主解答] 如圖所示,由球心作平面ABC的垂線,則垂足為BC的中點M

10、. 又AM=BC=,OM=AA1=6, 所以球O的半徑R=OA= =. [答案] C 【互動探究】[來源:] 側(cè)棱和底面邊長都是3的正四棱錐的外接球半徑是多少? 解:依題意得,該正四棱錐的底面對角線的長為3=6,高為 =3, 因此底面中心到各頂點的距離均等于3, 所以該四棱錐的外接球的球心即為底面正方形的中心,其外接球的半徑為3.      【方法規(guī)律】 與球有關(guān)的組合體的類型及解法 (1)球與旋轉(zhuǎn)體的組合通常作出它們的軸截面解題. (2)球與多面體的組合,通常過多面體的一條側(cè)棱和球心,或“切點”、“接點”作出截面圖,把空間問題化歸為平面問題. (201

11、3新課標全國卷Ⅰ)如圖所示,有一個水平放置的透明無蓋的正方體容器,容器高8 cm,將一個球放在容器口,再向容器內(nèi)注水,當球面恰好接觸水面時測得水深為6 cm,如果不計容器厚度,則球的體積為(  ) A. cm3 B. cm3 C. cm3 D. cm3 解析:選A 設(shè)球半徑為R cm,根據(jù)已知條件知正方體的上底面與球相交所得截面圓的半徑為4 cm,球心到截面的距離為(R-2)cm,所以由42+(R-2)2=R2,得R=5,所以球的體積V=πR3=π53= cm3. ——————————[課堂歸納——通法領(lǐng)悟]————————

12、———————— 1種思想——轉(zhuǎn)化與化歸思想  計算旋轉(zhuǎn)體的側(cè)面積時,一般采用轉(zhuǎn)化的方法來進行,即將側(cè)面展開化為平面圖形,“化曲為直”來解決,因此要熟悉常見旋轉(zhuǎn)體的側(cè)面展開圖的形狀及平面圖形面積的求法.[來源:] 2種方法——割補法與等積法  (1)割補法:求一些不規(guī)則幾何體的體積時,常用割補法轉(zhuǎn)化成已知體積公式的幾何體進行解決. (2)等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時,這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計算得到高的數(shù)值. 2個注意點——求空間幾何體的表面積應(yīng)注意兩點  (1)求組合體的表面積時,要注意各幾何體重疊部分的處理.[來源:] (2)底面是梯形的四棱柱側(cè)放時,容易和四棱臺混淆,在識別時要緊扣定義,以防出錯. 高考數(shù)學復習精品 高考數(shù)學復習精品

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!