人教版 高中數(shù)學(xué)選修23 教案正態(tài)分布

上傳人:仙*** 文檔編號:41728089 上傳時(shí)間:2021-11-23 格式:DOC 頁數(shù):7 大小:252KB
收藏 版權(quán)申訴 舉報(bào) 下載
人教版 高中數(shù)學(xué)選修23 教案正態(tài)分布_第1頁
第1頁 / 共7頁
人教版 高中數(shù)學(xué)選修23 教案正態(tài)分布_第2頁
第2頁 / 共7頁
人教版 高中數(shù)學(xué)選修23 教案正態(tài)分布_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《人教版 高中數(shù)學(xué)選修23 教案正態(tài)分布》由會員分享,可在線閱讀,更多相關(guān)《人教版 高中數(shù)學(xué)選修23 教案正態(tài)分布(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、人教版高中數(shù)學(xué)精品資料 正態(tài)分布 教學(xué)目標(biāo): 知識與技能:掌握正態(tài)分布在實(shí)際生活中的意義和作用 。 過程與方法:結(jié)合正態(tài)曲線,加深對正態(tài)密度函數(shù)的理理。 情感、態(tài)度與價(jià)值觀:通過正態(tài)分布的圖形特征,歸納正態(tài)曲線的性質(zhì) 。 教學(xué)重點(diǎn):正態(tài)分布曲線的性質(zhì)、標(biāo)準(zhǔn)正態(tài)曲線N(0,1) 。 教學(xué)難點(diǎn):通過正態(tài)分布的圖形特征,歸納正態(tài)曲線的性質(zhì)。 教具準(zhǔn)備:多媒體、實(shí)物投影儀 。 教學(xué)設(shè)想:在總體分布研究中我們選擇正態(tài)分布作為研究的突破口,正態(tài)分布在統(tǒng)計(jì)學(xué)中是最基本、最重要的一種分布。 內(nèi)容分析: 1.在實(shí)際遇到的許多隨機(jī)現(xiàn)象都服從或近似服從正態(tài)分布在上一節(jié)課我們研究了當(dāng)樣

2、本容量無限增大時(shí),頻率分布直方圖就無限接近于一條總體密度曲線,總體密度曲線較科學(xué)地反映了總體分布但總體密度曲線的相關(guān)知識較為抽象,學(xué)生不易理解,因此在總體分布研究中我們選擇正態(tài)分布作為研究的突破口正態(tài)分布在統(tǒng)計(jì)學(xué)中是最基本、最重要的一種分布 2.正態(tài)分布是可以用函數(shù)形式來表述的其密度函數(shù)可寫成: , (σ>0) 由此可見,正態(tài)分布是由它的平均數(shù)μ和標(biāo)準(zhǔn)差σ唯一決定的常把它記為 3.從形態(tài)上看,正態(tài)分布是一條單峰、對稱呈鐘形的曲線,其對稱軸為x=μ,并在x=μ時(shí)取最大值從x=μ點(diǎn)開始,曲線向正負(fù)兩個(gè)方向遞減延伸,不斷逼近x軸,但永不與x軸相交,因此說曲線在正負(fù)兩個(gè)方向都是以x軸為漸

3、近線的 [來源:] 4.通過三組正態(tài)分布的曲線,可知正態(tài)曲線具有兩頭低、中間高、左右對稱的基本特征 [來源:] 5.由于正態(tài)分布是由其平均數(shù)μ和標(biāo)準(zhǔn)差σ唯一決定的,因此從某種意義上說,正態(tài)分布就有好多好多,這給我們深入研究帶來一定的困難但我們也發(fā)現(xiàn),許多正態(tài)分布中,重點(diǎn)研究N(0,1),其他的正態(tài)分布都可以通過轉(zhuǎn)化為N(0,1),我們把N(0,1)稱為標(biāo)準(zhǔn)正態(tài)分布,其密度函數(shù)為,x∈(-∞,+∞),從而使正態(tài)分布的研究得以簡化 6.結(jié)合正態(tài)曲線的圖形特征,歸納正態(tài)曲線的性質(zhì)正態(tài)曲線的作圖較難,教科書沒做要求,授課時(shí)可以借助幾何畫板作圖,學(xué)生只要了解大致的情形就行了,關(guān)鍵是能通過正態(tài)曲線

4、,引導(dǎo)學(xué)生歸納其性質(zhì) [來源:] 教學(xué)過程: 學(xué)生探究過程: 復(fù)習(xí)引入: 總體密度曲線:樣本容量越大,所分組數(shù)越多,各組的頻率就越接近于總體在相應(yīng)各組取值的概率.設(shè)想樣本容量無限增大,分組的組距無限縮小,那么頻率分布直方圖就會無限接近于一條光滑曲線,這條曲線叫做總體密度曲線. 它反映了總體在各個(gè)范圍內(nèi)取值的概率.根據(jù)這條曲線,可求出總體在區(qū)間(a,b)內(nèi)取值的概率等于總體密度曲線,直線x=a,x=b及x軸所圍圖形的面積. 觀察總體密度曲線的形狀,它具有“兩頭低,中間高,左右對稱”的特征,具有這種特征的總體密度曲線一般可用下面函數(shù)的圖象來表示或近似表示: 式中的實(shí)數(shù)、是

5、參數(shù),分別表示總體的平均數(shù)與標(biāo)準(zhǔn)差,的圖象為正態(tài)分布密度曲線,簡稱正態(tài)曲線.[來源:] 講解新課: 一般地,如果對于任何實(shí)數(shù),隨機(jī)變量X滿足 , 則稱 X 的分布為正態(tài)分布(normal distribution ) .正態(tài)分布完全由參數(shù)和確定,因此正態(tài)分布常記作.如果隨機(jī)變量 X 服從正態(tài)分布,則記為X~. 經(jīng)驗(yàn)表明,一個(gè)隨機(jī)變量如果是眾多的、互不相干的、不分主次的偶然因素作用結(jié)果之和,它就服從或近似服從正態(tài)分布.例如,高爾頓板試驗(yàn)中,小球在下落過程中要與眾多小木塊發(fā)生碰撞,每次碰撞的結(jié)果使得小球隨機(jī)地向左或向右下落,因此小球第1次與高爾頓板底部接觸時(shí)的坐標(biāo) X 是眾

6、多隨機(jī)碰撞的結(jié)果,所以它近似服從正態(tài)分布.在現(xiàn)實(shí)生活中,很多隨機(jī)變量都服從或近似地服從正態(tài)分布.例如長度測量誤差;某一地區(qū)同年齡人群的身高、體重、肺活量等;一定條件下生長的小麥的株高、穗長、單位面積產(chǎn)量等;正常生產(chǎn)條件下各種產(chǎn)品的質(zhì)量指標(biāo)(如零件的尺寸、纖維的纖度、電容器的電容量、電子管的使用壽命等);某地每年七月份的平均氣溫、平均濕度、降雨量等;一般都服從正態(tài)分布.因此,正態(tài)分布廣泛存在于自然現(xiàn)象、生產(chǎn)和生活實(shí)際之中.正態(tài)分布在概率和統(tǒng)計(jì)中占有重要的地位. 說明:1參數(shù)是反映隨機(jī)變量取值的平均水平的特征數(shù),可以用樣本均值去佑計(jì);是衡量隨機(jī)變量總體波動大小的特征數(shù),可以用樣本標(biāo)準(zhǔn)差去估計(jì).

7、 2.早在 1733 年,法國數(shù)學(xué)家棣莫弗就用n!的近似公式得到了正態(tài)分布.之后,德國數(shù)學(xué)家高斯在研究測量誤差時(shí)從另一個(gè)角度導(dǎo)出了它,并研究了它的性質(zhì),因此,人們也稱正態(tài)分布為高斯分布.[來源:] 2.正態(tài)分布)是由均值μ和標(biāo)準(zhǔn)差σ唯一決定的分布 通過固定其中一個(gè)值,討論均值與標(biāo)準(zhǔn)差對于正態(tài)曲線的影響 3.通過對三組正態(tài)曲線分析,得出正態(tài)曲線具有的基本特征是兩頭底、中間高、左右對稱正態(tài)曲線的作圖,書中沒有做要求,教師也不必補(bǔ)上講課時(shí)教師可以應(yīng)用幾何畫板,形象、美觀地畫出三條正態(tài)曲線的圖形,結(jié)合前面均值與標(biāo)準(zhǔn)差對圖形的影響,引導(dǎo)學(xué)生觀察總結(jié)正態(tài)曲線的性質(zhì) 4.正態(tài)曲線

8、的性質(zhì): (1)曲線在x軸的上方,與x軸不相交 (2)曲線關(guān)于直線x=μ對稱 (3)當(dāng)x=μ時(shí),曲線位于最高點(diǎn) (4)當(dāng)x<μ時(shí),曲線上升(增函數(shù));當(dāng)x>μ時(shí),曲線下降(減函數(shù))并且當(dāng)曲線向左、右兩邊無限延伸時(shí),以x軸為漸近線,向它無限靠近 (5)μ一定時(shí),曲線的形狀由σ確定 σ越大,曲線越“矮胖”,總體分布越分散; σ越?。€越“瘦高”.總體分布越集中: 五條性質(zhì)中前三條學(xué)生較易掌握,后兩條較難理解,因此在講授時(shí)應(yīng)運(yùn)用數(shù)形結(jié)合的原則,采用對比教學(xué) 5.標(biāo)準(zhǔn)正態(tài)曲線:當(dāng)μ=0、σ=l時(shí),正態(tài)總體稱為標(biāo)準(zhǔn)正態(tài)總體,其相應(yīng)的函數(shù)表示式是,(-∞<x<+∞) 其相

9、應(yīng)的曲線稱為標(biāo)準(zhǔn)正態(tài)曲線 標(biāo)準(zhǔn)正態(tài)總體N(0,1)在正態(tài)總體的研究中占有重要的地位任何正態(tài)分布的概率問題均可轉(zhuǎn)化成標(biāo)準(zhǔn)正態(tài)分布的概率問題 講解范例: 例1.給出下列三個(gè)正態(tài)總體的函數(shù)表達(dá)式,請找出其均值μ和標(biāo)準(zhǔn)差σ (1) (2) (3) 答案:(1)0,1;(2)1,2;(3)-1,0.5 例2求標(biāo)準(zhǔn)正態(tài)總體在(-1,2)內(nèi)取值的概率. 解:利用等式有 ==0.9772+0.8413-1=0.8151. 1.標(biāo)準(zhǔn)正態(tài)總體的概率問題: [來源:Z|xx|k.Com] 對于標(biāo)準(zhǔn)正態(tài)總體N(0,1),是總體取值小于的概率, 即 ,[來源:] 其中,圖中

10、陰影部分的面積表示為概率只要有標(biāo)準(zhǔn)正態(tài)分布表即可查表解決.從圖中不難發(fā)現(xiàn):當(dāng)時(shí),;而當(dāng)時(shí),Φ(0)=0.5 2.標(biāo)準(zhǔn)正態(tài)分布表 標(biāo)準(zhǔn)正態(tài)總體在正態(tài)總體的研究中有非常重要的地位,為此專門制作了“標(biāo)準(zhǔn)正態(tài)分布表”.在這個(gè)表中,對應(yīng)于的值是指總體取值小于的概率,即 ,. 若,則. 利用標(biāo)準(zhǔn)正態(tài)分布表,可以求出標(biāo)準(zhǔn)正態(tài)總體在任意區(qū)間內(nèi)取值的概率,即直線,與正態(tài)曲線、x軸所圍成的曲邊梯形的面積. 3.非標(biāo)準(zhǔn)正態(tài)總體在某區(qū)間內(nèi)取值的概率:可以通過轉(zhuǎn)化成標(biāo)準(zhǔn)正態(tài)總體,然后查標(biāo)準(zhǔn)正態(tài)分布表即可在這里重點(diǎn)掌握如何轉(zhuǎn)化首先要掌握正態(tài)總體的均值和標(biāo)準(zhǔn)差,然后進(jìn)行相應(yīng)的轉(zhuǎn)化 4.小概率事件的含

11、義 發(fā)生概率一般不超過5%的事件,即事件在一次試驗(yàn)中幾乎不可能發(fā)生 [來源:] 假設(shè)檢驗(yàn)方法的基本思想:首先,假設(shè)總體應(yīng)是或近似為正態(tài)總體,然后,依照小概率事件幾乎不可能在一次試驗(yàn)中發(fā)生的原理對試驗(yàn)結(jié)果進(jìn)行分析 假設(shè)檢驗(yàn)方法的操作程序,即“三步曲” 一是提出統(tǒng)計(jì)假設(shè),教科書中的統(tǒng)計(jì)假設(shè)總體是正態(tài)總體; 二是確定一次試驗(yàn)中的a值是否落入(μ-3σ,μ+3σ); 三是作出判斷 講解范例: 例1. 若x~N(0,1),求(l)P(-2.32<x<1.2);(2)P(x>2). 解:(1)P(-2.32<x<1.2)=

12、F(1.2)-F(-2.32)     =F(1.2)-[1-F(2.32)]=0.8849-(1-0.9898)=0.8747. (2)P(x>2)=1-P(x<2)=1-F(2)=l-0.9772=0.0228. 例2.利用標(biāo)準(zhǔn)正態(tài)分布表,求標(biāo)準(zhǔn)正態(tài)總體在下面區(qū)間取值的概率:[來源:] (1)在N(1,4)下,求 (2)在N(μ,σ2)下,求F(μ-σ,μ+σ); F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ); F(μ-3σ,μ+3σ) 解:(1)==Φ(1)=0.8413 (2)F(μ+σ)==Φ(1)=0.8413 F(μ-

13、σ)==Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342 F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954 F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997 對于正態(tài)總體取值的概率: 在區(qū)間(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)內(nèi)取值的概率分別為68.3%、95.4%、99.7%因此我們時(shí)常只在區(qū)間(μ-3σ,μ+3σ

14、)內(nèi)研究正態(tài)總體分布情況,而忽略其中很小的一部分 例3.某正態(tài)總體函數(shù)的概率密度函數(shù)是偶函數(shù),而且該函數(shù)的最大值為,求總體落入?yún)^(qū)間(-1.2,0.2)之間的概率 解:正態(tài)分布的概率密度函數(shù)是,它是偶函數(shù),說明μ=0,的最大值為=,所以σ=1,這個(gè)正態(tài)分布就是標(biāo)準(zhǔn)正態(tài)分布 鞏固練習(xí):書本第74頁 1,2,3 課后作業(yè): 書本第75頁 習(xí)題2. 4 A組 1 , 2 B組1 , 2 教學(xué)反思: 1.在實(shí)際遇到的許多隨機(jī)現(xiàn)象都服從或近似服從正態(tài)分布在上一節(jié)課我們研究了當(dāng)樣本容量無限增大時(shí),頻率分布直方圖就無限接近于一條總體密度曲線,總體密度曲線較科學(xué)地反映了總體分布但總

15、體密度曲線的相關(guān)知識較為抽象,學(xué)生不易理解,因此在總體分布研究中我們選擇正態(tài)分布作為研究的突破口正態(tài)分布在統(tǒng)計(jì)學(xué)中是最基本、最重要的一種分布 2.正態(tài)分布是可以用函數(shù)形式來表述的其密度函數(shù)可寫成:[來源:] , (σ>0) 由此可見,正態(tài)分布是由它的平均數(shù)μ和標(biāo)準(zhǔn)差σ唯一決定的常把它記為 3.從形態(tài)上看,正態(tài)分布是一條單峰、對稱呈鐘形的曲線,其對稱軸為x=μ,并在x=μ時(shí)取最大值從x=μ點(diǎn)開始,曲線向正負(fù)兩個(gè)方向遞減延伸,不斷逼近x軸,但永不與x軸相交,因此說曲線在正負(fù)兩個(gè)方向都是以x軸為漸近線的 4.通過三組正態(tài)分布的曲線,可知正態(tài)曲線具有兩頭低、中間高、左右對稱的基本特征。由于正態(tài)分布是由其平均數(shù)μ和標(biāo)準(zhǔn)差σ唯一決定的,因此從某種意義上說,正態(tài)分布就有好多好多,這給我們深入研究帶來一定的困難但我們也發(fā)現(xiàn),許多正態(tài)分布中,重點(diǎn)研究N(0,1),其他的正態(tài)分布都可以通過轉(zhuǎn)化為N(0,1),我們把N(0,1)稱為標(biāo)準(zhǔn)正態(tài)分布,其密度函數(shù)為,x∈(-∞,+∞),從而使正態(tài)分布的研究得以簡化。結(jié)合正態(tài)曲線的圖形特征,歸納正態(tài)曲線的性質(zhì)正態(tài)曲線的作圖較難,教科書沒做要求,授課時(shí)可以借助幾何畫板作圖,學(xué)生只要了解大致的情形就行了,關(guān)鍵是能通過正態(tài)曲線,引導(dǎo)學(xué)生歸納其性質(zhì)。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!