5、cosAsinC=,∴△ABC的面積為S=acsinB=.
答案:A
7.已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A-B+C)=sin(C-A-B)+,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對(duì)的邊,則下列不等式一定成立的是( )
A.bc(b+c)>8 B.a(chǎn)c(a+b)>16
C.6≤abc≤12 D.12≤abc≤24
解析:由題設(shè)得sin2A+sin(π-2B)=sin(2C-π)+?sin2A+sin2B+sin2C=?sin[2π-(2B+2C)]+sin2B+sin2C=?sin2B+sin2C-sin(2B+2C)=?sin2B(1-co
6、s2C)+sin2C(1-cos2B)=?4sinBsinC(sinBcosC+cosBsinC)=?sinAsinBsinC=.由三角形面積公式S=absinC及正弦定理得S=4R2sinAsinBsinC,∴R2=4S,又1≤S≤2,∴4≤R2≤8,∴bc(b+c)=abc=8R3sinAsinBsinC>R3恒成立,∴bc(b+c)>8.故選A.
答案:A
二、填空題
8.(2016江西吉安期中)在△ABC中,D為BC邊上一點(diǎn),若△ABD是等邊三角形,且AC=4,則△ADC的面積的最大值為__________.
解析:在△ACD中,cos∠ADC===-,整理得AD2+CD2=4
7、8-ADDC≥2ADDC,∴ADDC≤16,當(dāng)AD=CD時(shí)等號(hào)成立,
∴△ADC的面積S=ADDCsin∠ADC=ADDC≤4,故答案為4.
答案:4
9.(2015北京高考)在△ABC中,a=4,b=5,c=6,則=__________.
解析:====1.
答案:1
10.在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,已知bcosC+ccosB=2b,則=__________.
解析:∵bcosC+ccosB=2b,由邊角互化得sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,即sinA=2sinB,∴a=2b?=2.
答案:2
三
8、、解答題
11.(2016江西高安段考)如圖,在等腰直角三角形OPQ中,∠POQ=90,OP=2,點(diǎn)M在線段PQ上.
(1)若OM=,求PM的長(zhǎng);
(2)若點(diǎn)N在線段MQ上,且∠MON=30,問(wèn):當(dāng)∠POM取何值時(shí),△OMN的面積最???并求出面積的最小值.
解:(1)在△OPQ中,∠OPQ=45,OM=,OP=2,由余弦定理得,OM2=OP2+PM2-2OPPMcos45,得PM2-4PM+3=0,解得PM=1或PM=3.
(2)設(shè)∠POM=α,0≤α≤60,在△OMP中,由正弦定理,得=,所以O(shè)M==,同理ON=.
S△OMN=OMONsin∠MON
=
=
=.
∵
9、0≤α≤60,30≤2α+30≤150,∴當(dāng)α=30時(shí),sin(2α+30)的最大值為1,此時(shí)△OMN的面積取到最小值.即∠POM=30時(shí),△OMN的面積的最小值為8-4.
12.如圖,港口A在港口O的正東120海里處,小島B在港口O的北偏東60的方向,且在港口A北偏西30的方向上.一艘科學(xué)考察船從港口O出發(fā),沿北偏東30的OD方向以20海里/小時(shí)的速度駛離港口O.一艘給養(yǎng)快艇從港口A以60海里/小時(shí)的速度駛向小島B,在B島轉(zhuǎn)運(yùn)補(bǔ)給物資后以相同的航速送往科考船.已知兩船同時(shí)出發(fā),補(bǔ)給裝船時(shí)間為1小時(shí).
(1)求給養(yǎng)快艇從港口A到小島B的航行時(shí)間;
(2)給養(yǎng)快艇駛離港口A后,最少經(jīng)過(guò)
10、多少時(shí)間能和科考船相遇?
解:(1)由題意知,在△OAB中,OA=120,∠AOB=30,∠OAB=60.于是AB=60,而快艇的速度為60海里/小時(shí),所以快艇從港口A到小島B的航行時(shí)間為1小時(shí).
(2)由(1)知,給養(yǎng)快艇從港口A駛離2小時(shí)后,從小島B出發(fā)與科考船匯合.為使航行的時(shí)間最少,快艇從小島B駛離后必須按直線方向航行,設(shè)t小時(shí)后恰與科考船在C處相遇.在△OAB中,OA=120,∠AOB=30,∠OAB=60,所以O(shè)B=60,而在△OCB中,BC=60t,OC=20(2+t),∠BOC=30,由余弦定理,得BC2=OB2+OC2-2OBOCcos∠BOC,即(60t)2=(60)2+[20(2+t)]2-26020(2+t),即8t2+5t-13=0,解得t=1或t=-(舍去).故t+2=3.即給養(yǎng)快艇駛離港口A后,最少經(jīng)過(guò)3小時(shí)能和科考船相遇.