《高中數(shù)學(xué)北師大版選修22教案:第2章 導(dǎo)數(shù)的四則運(yùn)算法則 第二課時(shí)參考教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)北師大版選修22教案:第2章 導(dǎo)數(shù)的四則運(yùn)算法則 第二課時(shí)參考教案(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2019年北師大版精品數(shù)學(xué)資料
4 導(dǎo)數(shù)的四則運(yùn)算法則
第二課時(shí) 導(dǎo)數(shù)的乘法與除法法則
一、教學(xué)目標(biāo):1、了解兩個(gè)函數(shù)的積、商的求導(dǎo)公式;2、會(huì)運(yùn)用上述公式,求含有積、商綜合運(yùn)算的函數(shù)的導(dǎo)數(shù);3、能運(yùn)用導(dǎo)數(shù)的幾何意義,求過(guò)曲線上一點(diǎn)的切線。
二、教學(xué)重點(diǎn):函數(shù)積、商導(dǎo)數(shù)公式的應(yīng)用
教學(xué)難點(diǎn):函數(shù)積、商導(dǎo)數(shù)公式
三、教學(xué)方法:探析歸納,講練結(jié)合
四、教學(xué)過(guò)程
(一)、復(fù)習(xí):兩個(gè)函數(shù)的和、差的求導(dǎo)公式
1.導(dǎo)數(shù)的定義:設(shè)函數(shù)在處附近有定義,如果時(shí),與的比(也叫函數(shù)的平均變化率)有極限即無(wú)限趨近于某個(gè)常數(shù),我們把這個(gè)極限值叫做函數(shù)在處的導(dǎo)數(shù),記作,即
2. 導(dǎo)數(shù)的幾
2、何意義:是曲線上點(diǎn)()處的切線的斜率因此,如果在點(diǎn)可導(dǎo),則曲線在點(diǎn)()處的切線方程為
3. 導(dǎo)函數(shù)(導(dǎo)數(shù)):如果函數(shù)在開(kāi)區(qū)間內(nèi)的每點(diǎn)處都有導(dǎo)數(shù),此時(shí)對(duì)于每一個(gè),都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),從而構(gòu)成了一個(gè)新的函數(shù), 稱這個(gè)函數(shù)為函數(shù)在開(kāi)區(qū)間內(nèi)的導(dǎo)函數(shù),簡(jiǎn)稱導(dǎo)數(shù),
4. 求函數(shù)的導(dǎo)數(shù)的一般方法:
(1)求函數(shù)的改變量(2)求平均變化率
(3)取極限,得導(dǎo)數(shù)=
5. 常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:;
6. 兩個(gè)函數(shù)和(差)的導(dǎo)數(shù)等于這兩個(gè)函數(shù)導(dǎo)數(shù)的和(差),即
(二)、探究新課
設(shè)函數(shù)在處的導(dǎo)數(shù)為,。我們來(lái)求在處的導(dǎo)數(shù)。
令,由于
知在處的導(dǎo)數(shù)值為。
因此的導(dǎo)數(shù)為。
3、
一般地,若兩個(gè)函數(shù)和的導(dǎo)數(shù)分別是和,我們有
特別地,當(dāng)時(shí),有
例1:求下列函數(shù)的導(dǎo)數(shù):
(1); (2); (3)。
解:(1);
(2);
(3)。
例2:求下列函數(shù)的導(dǎo)數(shù):
(1); (2)。
解:(1);
(2)。
(三)、練習(xí):課本練習(xí)1.
(四)、課堂小結(jié):1、了解兩個(gè)函數(shù)的積、商的求導(dǎo)公式;2、會(huì)運(yùn)用上述公式,求含有積、商綜合運(yùn)算的函數(shù)的導(dǎo)數(shù);3、能運(yùn)用導(dǎo)數(shù)的幾何意義,求過(guò)曲線上一點(diǎn)的切線。4、法則:一般地,若兩個(gè)函數(shù)和的導(dǎo)數(shù)分別是和,我們有
特別地,當(dāng)時(shí),有
(五)、作業(yè):課本習(xí)題2-4:A組4(1)、(2)、(3)、(5)、(6);5
五、教后反思: