高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應用 第三章 3.3

上傳人:仙*** 文檔編號:44912285 上傳時間:2021-12-06 格式:DOC 頁數(shù):17 大?。?94KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應用 第三章 3.3_第1頁
第1頁 / 共17頁
高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應用 第三章 3.3_第2頁
第2頁 / 共17頁
高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應用 第三章 3.3_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應用 第三章 3.3》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學浙江理科一輪【第三章】導數(shù)及其應用 第三章 3.3(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 3.3 兩角和與差的正弦、余弦、正切 1. 兩角和與差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (Cα-β) cos(α+β)=cos_αcos_β-sin_αsin_β (Cα+β) sin(α-β)=sin_αcos_β-cos_αsin_β (Sα-β) sin(α+β)=sin_αcos_β+cos_αsin_β (Sα+β) tan(α-β)= (Tα-β) tan(α+β)= (Tα+β) 2. 二倍角公式 sin 2α=2sin_αcos_α;

2、 cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; tan 2α=. 3. 在準確熟練地記住公式的基礎(chǔ)上,要靈活運用公式解決問題:如公式的正用、逆用和變形用等.如Tαβ可變形為 tan αtan β=tan(αβ)(1?tan_αtan_β), tan αtan β=1-=-1. 4. 函數(shù)f(x)=asin α+bcos α(a,b為常數(shù)),可以化為f(α)=sin(α+φ)(其中tan φ=)或f(α)=cos(α-φ)(其中tan φ=). 1. 判斷下面結(jié)論是否正確(請在括號中打“√”或“”) (1)兩角和與差的正弦、余弦公式中的角α,β是

3、任意的. ( √ ) (2)存在實數(shù)α,β,使等式sin(α+β)=sin α+sin β成立. ( √ ) (3)在銳角△ABC中,sin Asin B和cos Acos B大小不確定. (  ) (4)公式tan(α+β)=可以變形為tan α+tan β=tan(α+β)(1-tan αtan β),且對任意角α,β都成立. (  ) (5)存在實數(shù)α,使tan 2α=2tan α. ( √ ) (6)當α+β=時,(1+tan α)(1+tan β)=2. ( √ ) 2. (2013浙江)已

4、知α∈R,sin α+2cos α=,則tan 2α等于 (  ) A. B. C.- D.- 答案 C 解析 ∵sin α+2cos α=, ∴sin2α+4sin αcos α+4cos2α=. 化簡得:4sin 2α=-3cos 2α, ∴tan 2α==-.故選C. 3. (2012江西)若=,則tan 2α等于 (  ) A.- B. C.- D. 答案 B 解析 由=,等式左邊分子、分母同除cos α得,=,解得tan α=-3,則tan 2α==. 4. (2012江蘇)設α為銳角,若cos

5、=,則sin的值為________. 答案  解析 ∵α為銳角且cos=, ∴sin=. ∴sin=sin =sin 2cos -cos 2sin =sincos- =- =-=. 5. (2013課標全國Ⅱ)設θ為第二象限角,若tan=,則sin θ+cos θ=________. 答案?。? 解析 ∵tan=,∴tan θ=-, 即解得sin θ=,cos θ=-. ∴sin θ+cos θ=-. 題型一 三角函數(shù)式的化簡與給角求值 例1 (1)化簡:(0<θ<π). (2)求值:-sin 10(-tan 5). 思維啟迪 (1)分母為根式,可以利用二

6、倍角公式去根號,然后尋求分子分母的共同點進行約分; (2)切化弦、通分. 解 (1)由θ∈(0,π),得0<<,∴cos >0. 因此= =2cos . 又(1+sin θ+cos θ)(sin -cos ) =(2sin cos +2cos2)(sin -cos ) =2cos (sin2-cos2) =-2cos cos θ. 故原式==-cos θ. (2)原式=-sin 10(-) =-sin 10 =-sin 10 =-2cos 10= = = ==. 思維升華 (1)三角函數(shù)式的化簡要遵循“三看”原則,一看角,二看名,三看式子結(jié)構(gòu)與特征. (2)對

7、于給角求值問題,往往所給角都是非特殊角,解決這類問題的基本思路有: ①化為特殊角的三角函數(shù)值; ②化為正、負相消的項,消去求值; ③化分子、分母出現(xiàn)公約數(shù)進行約分求值.  (1)在△ABC中,已知三個內(nèi)角A,B,C成等差數(shù)列,則tan +tan +tan tan 的值為________. (2)的值是 (  ) A. B. C. D. 答案 (1) (2)C 解析 (1)因為三個內(nèi)角A,B,C成等差數(shù)列,且A+B+C=π,所以A+C=,=,tan =, 所以tan +tan +tan tan =tan+tan tan =+

8、tan tan =. (2)原式= = ==. 題型二 三角函數(shù)的給值求值、給值求角 例2 (1)已知0<β<<α<π,且cos=-,sin=,求cos(α+β)的值; (2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,求2α-β的值. 思維啟迪 (1)拆分角:=-,利用平方關(guān)系分別求各角的正弦、余弦. (2)2α-β=α+(α-β);α=(α-β)+β. 解 (1)∵0<β<<α<π, ∴-<-β<,<α-<π, ∴cos= =, sin= =, ∴cos =cos =coscos+sinsin =+=, ∴cos(α+β)=2cos2-1=

9、2-1=-. (2)∵tan α=tan[(α-β)+β]= ==>0,∴0<α<, 又∵tan 2α===>0, ∴0<2α<, ∴tan(2α-β)===1. ∵tan β=-<0, ∴<β<π,-π<2α-β<0,∴2α-β=-. 思維升華 (1)解題中注意變角,如本題中=(α-)-(-β); (2)通過求角的某種三角函數(shù)值來求角,在選取函數(shù)時,遵照以下原則:①已知正切函數(shù)值,選正切函數(shù);②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是(0,π),選余弦較好;若角的范圍為,選正弦較好.  (1)若0<α<,-<β<0,cos(+α)=

10、,cos(-)=,則cos(α+)等于(  ) A. B.- C. D.- (2)已知sin α=,sin(α-β)=-,α,β均為銳角,則角β等于 (  ) A. B. C. D. 答案 (1)C (2)C 解析 (1)cos(α+)=cos[(+α)-(-)] =cos(+α)cos(-)+sin(+α)sin(-), ∵0<α<,則<+α<,∴sin(+α)=. 又-<β<0,則<-<, 則sin(-)=. 故cos(α+)=cos[+α-(-)] =cos(+α)cos(-)+sin(+α)sin(-) =+=,故選

11、C. (2)∵α、β均為銳角,∴-<α-β<. 又sin(α-β)=-,∴cos(α-β)=. 又sin α=,∴cos α=, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =-(-)=. ∴β=. 題型三 三角變換的簡單應用 例3 已知函數(shù)f(x)=sin+cos,x∈R. (1)求f(x)的最小正周期和最小值; (2)已知cos(β-α)=,cos(β+α)=-,0<α<β≤,求證:[f(β)]2-2=0. 思維啟迪 (1)可將f(x)化成y=Asin(ωx+φ)的形式; (2)據(jù)已知條件確定β,再代入f(x)求值

12、. (1)解 ∵f(x)=sin+cos =sin+sin=2sin, ∴T=2π,f(x)的最小值為-2. (2)證明 由已知得cos βcos α+sin βsin α=, cos βcos α-sin βsin α=-, 兩式相加得2cos βcos α=0, ∵0<α<β≤,∴β=,∴[f(β)]2-2=4sin2-2=0. 思維升華 三角變換和三角函數(shù)性質(zhì)相結(jié)合是高考的一個熱點,解題時要注意觀察角、式子間的聯(lián)系,利用整體思想解題.  (1)函數(shù)f(x)=sin x+cos(+x)的最大值為 (  ) A.2 B. C.1 D. (

13、2)函數(shù)f(x)=sin(2x-)-2sin2x的最小正周期是________. 答案 (1)C (2)π 解析 (1)f(x)=sin x+cos cos x-sin sin x =cos x+sin x=sin(x+). ∴f(x)max=1. (2)f(x)=sin 2x-cos 2x-(1-cos 2x) =sin 2x+cos 2x-=sin(2x+)-, ∴T==π. 高考中的三角變換問題 典例:(9分)(1)若tan 2θ=-2,π<2θ<2π,則=________. (2)已知銳角α,β滿足sin α=,cos β=,則α+β等于 (  )

14、 A. B.或 C. D.2kπ+(k∈Z) 思維啟迪 (1)注意和差公式的逆用及變形; (2)可求α+β的某一三角函數(shù)值,結(jié)合α+β的范圍求角. 解析 (1)原式==, 又tan 2θ==-2, 即tan2θ-tan θ-=0, 解得tan θ=-或tan θ=. ∵π<2θ<2π,∴<θ<π. ∴tan θ=-,故所求==3+2. (2)由sin α=,cos β=且α,β為銳角,可知cos α=,sin β=, 故cos(α+β)=cos αcos β-sin αsin β=-=, 又0<α+β<π,故α+β=. 答案 (1)3+2 (2)

15、C 溫馨提醒 三角變換中的求值問題要注意利用式子的特征,靈活應用公式;對于求角問題,一定要結(jié)合角的范圍求解. 方法與技巧 1. 巧用公式變形: 和差角公式變形:tan xtan y=tan(xy)(1?tan xtan y);倍角公式變形:降冪公式cos2α=,sin2α=, 配方變形:1sin α=2,1+cos α=2cos2,1-cos α=2sin2. 2. 利用輔助角公式求最值、單調(diào)區(qū)間、周期.由y=asin α+bcos α=sin(α+φ)(其中tan φ=)有≥|y|. 3. 重視三角函數(shù)的“三變”:“三變”是指“變角、變名、變式”;變角:對角的分拆要盡可能化

16、成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等.在解決求值、化簡、證明問題時,一般是觀察角度、函數(shù)名、所求(或所證明)問題的整體形式中的差異,再選擇適當?shù)娜枪胶愕茸冃危? 失誤與防范 1. 運用公式時要注意審查公式成立的條件,要注意和、差、倍角的相對性,要注意升次、降次的靈活運用,要注意“1”的各種變通. 2. 在(0,π)范圍內(nèi),sin(α+β)=所對應的角α+β不是唯一的. 3. 在三角求值時,往往要估計角的范圍后再求值. A組 專項基礎(chǔ)訓練 (時間:40分鐘) 一、選擇題 1. 若θ∈[,],sin 2θ=,則

17、sin θ等于 (  ) A. B. C. D. 答案 D 解析 由sin 2θ=和sin2θ+cos2θ=1得 (sin θ+cos θ)2=+1=()2, 又θ∈[,],∴sin θ+cos θ=. 同理,sin θ-cos θ=,∴sin θ=. 2. 已知tan(α+β)=,tan=,那么tan等于 (  ) A. B. C. D. 答案 C 解析 因為α++β-=α+β, 所以α+=(α+β)-,所以 tan=tan ==. 3. (2013重慶)4cos 50-tan 40等于

18、 (  ) A. B. C. D.2-1 答案 C 解析 4cos 50-tan 40= == ===. 4. 若tan α+=,α∈(,),則sin(2α+)的值為 (  ) A.- B. C. D. 答案 A 解析 由tan α+=得+=, ∴=,∴sin 2α=. ∵α∈(,),∴2α∈(,π), ∴cos 2α=-. ∴sin(2α+)=sin 2αcos +cos 2αsin =(-)=-. 5. 在△ABC中,tan A+tan B+=tan Atan B,則C等于 (  ) A. B.

19、 C. D. 答案 A 解析 由已知可得tan A+tan B=(tan Atan B-1), ∴tan(A+B)==-, 又0

20、an α)(1+tan β)=1+tan α+tan β+tan αtan β=2. 8. =________. 答案?。? 解析 原式= = == ==-4. 三、解答題 9. 已知tan α=-,cos β=,α∈(,π),β∈(0,),求tan(α+β)的值,并求出α+β的值. 解 由cos β=,β∈(0,), 得sin β=,tan β=2. ∴tan(α+β)= ==1. ∵α∈(,π),β∈(0,),∴<α+β<, ∴α+β=. 10.已知α∈,且sin +cos =. (1)求cos α的值; (2)若sin(α-β)=-,β∈,求cos β的

21、值. 解 (1)因為sin +cos =, 兩邊同時平方,得sin α=. 又<α<π,所以cos α=-. (2)因為<α<π,<β<π, 所以-π<-β<-,故-<α-β<. 又sin(α-β)=-,得cos(α-β)=. cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =-+=-. B組 專項能力提升 (時間:30分鐘) 1. 已知tan(α+)=,且-<α<0,則等于 (  ) A.- B.- C.- D. 答案 A 解析 由tan(α+)==,得tan α=-. 又-<α<0,

22、所以sin α=-. 故==2sin α=-. 2. 定義運算=ad-bc,若cos α=,=,0<β<α<,則β等于(  ) A. B. C. D. 答案 D 解析 依題意有sin αcos β-cos αsin β=sin(α-β)=, 又0<β<α<,∴0<α-β<, 故cos(α-β)==, 而cos α=,∴sin α=, 于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =-=, 故β=,選D. 3. 設x∈,則函數(shù)y=的最小值為________. 答案  解析 方法一 因為y==,

23、 所以令k=.又x∈, 所以k就是單位圓x2+y2=1的左半圓上的動點P(-sin 2x,cos 2x)與定點Q(0,2)所成直線的斜率.又kmin=tan 60=,所以函數(shù)y=的最小值為. 方法二 y== ==tan x+. ∵x∈(0,),∴tan x>0. ∴tan x+≥2=. (當tan x=,即x=時取等號) 即函數(shù)的最小值為. 4. 已知tan(π+α)=-,tan(α+β)=. (1)求tan(α+β)的值; (2)求tan β的值. 解 (1)∵tan(π+α)=-,∴tan α=-. ∵tan(α+β)= == = == ==. (2)tan β=tan[(α+β)-α]= ==. 5. 已知函數(shù)f(x)=2cos(其中ω>0,x∈R)的最小正周期為10π. (1)求ω的值; (2)設α,β∈,f=-,f =,求cos(α+β)的值. 解 (1)由T==10π得ω=. (2)由 得 整理得 ∵α,β∈, ∴cos α==,sin β==. ∴cos(α+β)=cos αcos β -sin αsin β =-=-.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!