《數列的極限》教學設計(共7頁)

上傳人:20022****wzdgj 文檔編號:47261185 上傳時間:2021-12-18 格式:DOC 頁數:7 大?。?76KB
收藏 版權申訴 舉報 下載
《數列的極限》教學設計(共7頁)_第1頁
第1頁 / 共7頁
《數列的極限》教學設計(共7頁)_第2頁
第2頁 / 共7頁
《數列的極限》教學設計(共7頁)_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《數列的極限》教學設計(共7頁)》由會員分享,可在線閱讀,更多相關《《數列的極限》教學設計(共7頁)(7頁珍藏版)》請在裝配圖網上搜索。

1、精選優(yōu)質文檔-----傾情為你奉上 《高等數學》——數列極限 教學設計 章節(jié)、內容 1.2 極限(數列極限) 授課時間及班級 2017年6月2日1、2節(jié) 電子技師3班 授課周次 第14周 授課時間 1課時45分鐘 教具 三角板、圓規(guī) 教材分析 教材地位 眾所周知,數列極限這個概念的理解是學習導數所必備的知識,另外,極限也是從初等數學的思維方式到高等數學的思維方式的質的轉變。 教學重點 數列極限的概念。 教學難點 如何從變化趨勢的角度, 來正確理解數列極限的概念。 教學關鍵 教學中啟發(fā)學生在分析問題時抓住問題的本質(即定義)。 教學目

2、標分析 知識目標 從數列的變化趨勢來理解極限的概念;能初步利用極限定義確定某些簡單的數列極限;體會極限思想。 能力目標 1、 通過設置問題情境、數列變化趨勢的分析,使學生理解數列極限的定義,學會數學語言的表述,培養(yǎng)學生觀察、分析、概括的能力。 2、 通過分層練習,使學生的基礎知識得到進一步的鞏固,進而學會數列極限的分析方法,體會在探索問題中由靜態(tài)到動態(tài)、由有限到無限的辨證觀點,感受“從具體到抽象,從特殊到一般再到特殊”的認識過程。 情感目標 1、通過介紹我國古代思想家莊周和數學家劉徽,激發(fā)學生的民族自尊心和愛國主義思想情感。 2、通過介紹生活中的極限運動和極限精神,激發(fā)學生的學

3、習積極性,優(yōu)化學生的思維品質。 教學方法分析 學生知識現(xiàn)狀分析 授課對象為二年級學生,有部分高中畢業(yè)生、大多數是初中畢業(yè)生、學生基礎層次差距較大;多數學生欠缺學習方法,不善于自己分析探究,習慣于教師的講授;另外數學語言表達存在一定問題。但已具備一定的初等數學基礎知識。 教法分析 根據本節(jié)課的內容和學生的實際水平,整節(jié)課以教師為主導、學生為主體、啟發(fā)思維為主線;并采用班內“隱性”分層教學,接合講授法、演示法、討論法、探究法等方法。 學法分析 1、自主學習:學生自己通過預習,了解所學知識 2、探究合作學習:通過教師的引導,學生合作探究,互相交流,解決教學中出現(xiàn)的問題。 3、練習

4、鞏固法:讓學生知道數學重在應用,通過應用來檢驗自己對知識的掌握情況 教學過程設計 接表后 教學過程設計 A、【課前準備】1、安排學生提前預習本節(jié)內容。 2、分組:4~6人為一個學習小組,確定一人為組長。教師需要做好協(xié)調工作,確保每位學生都參加。 B、【組織教學】 檢查學生出勤情況,填寫教學日志,教材、用具準備等(2分鐘) C、【復習回顧】 數列的定義(2分鐘) D、【教學內容、方法和過程】接下表 教師活動 學 生 活 動 設計意圖 (一) 結合實際,情景導入(時間4分鐘) 導入1、戰(zhàn)國時代哲學家莊周所著的《莊子天下篇》引用過一句話:“一尺之棰,日取其半,萬世

5、不竭” 也就是說一根長為一尺的木棒,每天截去一半,這樣的過程可以無限制地進行下去 導入2、三國時的劉徽提出的“割圓求周”的方法.他把圓周分成三等分、六等分、十二等分、二十四等分、 這樣繼續(xù)分割下去,所得多邊形的周長就無限接近于圓的周長. 教師引入:不論是莊周還是劉徽,在他們的思想中都體現(xiàn)了一種數列極限思想,今天我們來學習數列極限。 【學情預設】:有的學生可能沒體會到情景導入的目的,教師最后要總結導入中蘊含的數學思想。 (二)歸納總結,形成概念: (時間9分鐘) 1.提出問題:分析當無限增大時,下列數列的項的變化趨勢及共同特征. (1)1,,,……遞減 (2)遞增 (

6、3)擺動 2.解決問題:[共同特征]不論這些變化趨勢如何,隨著項數的無限增大,數列的項無限地趨近于常數.(即無限地接近于0) 3.強化認識:(學生回答)觀察下面三個數列 :分析當n無限 增大時,下列數列的項 的變化趨勢 (1)1, (2)0.9, 0.99, 0.999, 0.9999……… (3) ,,,…,,…; 提出問題: 當n無限增大時,上述數列趨近常數的方式有哪幾種類型? 4.概念形成:一般地,如果當項數無限增大時,無窮數列的項無限地趨近于某個常數(即無限地接近0),那么就說數列以為極限或者說是數列的極限. 記作: 讀作:“當趨向于無窮大時,的

7、極限等于a.” 注意:(1)是無窮數列. (2)數值變化趨勢:遞減的、遞增的、擺動的 (三)嘗試探究,深化概念: (時間10分鐘) 例1.考察下面的數列,寫出它們的極限 (1) (2)6.5,6.95,6.995,…, (3) 解:(1)數列的項隨的增大而減小,但大于0,且當無限增大時,無限地趨近于0,因此數列的極限是0. (2)(3)請學生分析完成. 探究性問題1:是否每個無窮數列都是有極限. ①2、4、6、8、………… ② ③ 【學情預設】:1、學生會錯誤認為所有數列都有極限。 2、學生對擺動數列中數的趨向難于把握。教師要充分發(fā) 揮多媒體的動畫效

8、果。 課堂練習 (1)數列的極限是 ,記作 . (2)數列的極限是 ,記作 . (3)數列的極限是 ,記作 . 【學情預設】:極限的記法第一次出現(xiàn),學生很容易出錯,尤其是極限的位置??紤]到各組的水平可能有所不同,教師應巡視,對個別組可做適當的指導 例2、求常數數列1,-1,1,-1,,-1,的極限. 例3、用計算器計算,由此猜想數列的極限。 結論:一般地,如果,那么 探究2: 1:若a=1時,則 2:若a=-1時,則 3:若a>1時,則 4:若a<-1時,則 【學情預設】:1、學生比較容易理解例2和例3,是否注意到對字母a的限制。 2

9、、在探索開放性練習上 ①首先選一從遞增數列的角度研究的小組上臺匯報; ②對于從遞減數列的角度研究的小組上臺匯報; ③問其它小組有沒不同的看法,上臺補充(是否注意到擺動數列) 3、學生很難想到從數列分類的角度去思考。 (四)分層練習、鞏固創(chuàng)新:(時間14分鐘) 1課本20頁1,(1),(2),(3),(4),(5) 2.探索開放性練習: 試說出滿足的幾個數列? 答: ……(答案不唯一) (五) :歸納小結(時間2分鐘) 1:數列極限的定義,記法,讀法 2:數列的三種趨向方式 3:常用數列的極限 (六) :作業(yè)布置,升華所學(時間4分鐘) 1、課后作

10、業(yè):課后練習題1,2,3和課外閱讀三國時的劉徽提出割圓術的方法.他把圓周分成三等分、六等分、十二等分、二十四等分、 這樣繼續(xù)分割下去,所得多邊形的周長就無限接近于圓的周長. 2、升華所學:出示圖片1(“蹦極”),2(“攀巖”),3(“登山”) 近年來,世界上興起了許多運動:如“蹦極” “攀巖” “登山”等。之所以受到歡迎,就是由于蘊含了一種極限精神:挑戰(zhàn)自己精神、膽量、勇氣、耐力的極限。在挑戰(zhàn)的同時,挑戰(zhàn)者也享受到了挑戰(zhàn)帶來的刺激和快樂。 (七)、板書設計: 數列極限 1、 數列極限的定義 一般地,如果當項數無限增大時,無窮數列的項無限地趨近于某個常數(即無限地接近0),那

11、么就說數列以為極限或者說是數列的極限. 記作: 讀作:“當趨向于無窮大時,的極限等于a.” 注意:(1)是無窮數列. (2)數值變化趨勢:遞減的、遞增的、擺動的 2、常見數列的極限 學生參與,思 考,感 受 學生參與,思 考 問題,在老師的引導下對數列極限知識有一個形象化的了解。 通過討論,學生了解以研究函數值的變化趨勢的觀點研究無窮數列,從而體會發(fā)現(xiàn)數列極限的過程 這一階段的教學中,采取“啟發(fā)式談話法”與“啟發(fā)式講解法”, 注意不“一次到位” 通過討論,在教師的引導下,使

12、學生得到結論 師生共同解決例(1),第(2)(3)學生分析完成. 學生合作討論,發(fā)揮教師的引導,學 生的主體作用, 完成預想的教學目標! 學生到黑板上填空 學生按照教師給出的閱讀提示閱讀,小組討論后給回答問題 自己分析,小組交流后回答 學生獨立完成練習1小組合作學習,完成探索開放性練習 小結由學生和老師共同完成,養(yǎng)成學生及時總結的習慣。 通過介紹我國古代哲學家莊周和劉徽,激發(fā)學生的民族自尊心和愛國主義思想情感,并

13、使他們對數列極限知識有一個形象化的了解。同時為學習新知識做準備,使學生更好的承上啟下。 (一)概念探索階段” 在這一階段的教學中,由于注意到學生在開始接觸數列極限這個概念時,總是以靜止的觀點來理解這個描述變化過程的動態(tài)概念,總覺得與以 前知識相比,接受起來有困難,似乎這個概念是突然產生的,甚至于不明概念所云,故我在這一階段計劃主要解決這樣幾個問題: ①使學生了解以研究函數值的變化趨勢的觀點研究無窮數列,從而發(fā)現(xiàn)數列極限的過程; ②使學生形成對數列極限的初步認識; (二)概念建立階段 歸納共同點,是鍛煉學生分析和總結的思維能力。同時培養(yǎng)學生動手能力,提高教學效果 ,進一步理解數

14、列極限的定義 進一步理解定義 學生通過教師引導和練習,去體會數列極限蘊含的數學思想,深化對定義的認識。 極限的記法第一次出現(xiàn),學生容易出錯,該練習的目的是為了熟悉極限的表示 教師給出閱讀提示,然后學生閱讀例2,例3,是為了提高課堂有效性,節(jié)省時間。 探究2是讓學生明白極限存在的前提,注意字母的范圍,同時加深對極限的認識。 課后練習1是檢驗本節(jié)課所學,完成本節(jié)教學任務。在探索開放性練習中,通過小組討論,合作探究過程中,讓 學生感受合作與交流的樂

15、趣。同時挖掘學生潛在的探索發(fā)現(xiàn)能力和創(chuàng)造能力。 最后通過小結,使知識系統(tǒng)化,條理化。 通過第1個作業(yè),鞏固所學!通過課外閱讀介紹我國古代數學家劉徽的成就,激發(fā)學生的民族自尊心和愛國主義思想情感,完成本節(jié)課情感態(tài)度與價值觀目標。 課后記 本教學設計先由引例出發(fā),創(chuàng)設情境,激發(fā)學生對數列極限的興趣;在講授新課部分,通過結合多媒體教學以及一系列的課堂探究活動,加深學生對極限及其蘊含思想的認識;最后通過課堂練習來鞏固學生對極限的掌握。 在課堂教學中,要合理的使用現(xiàn)代技術,如在擺動數列的極限的研究中,要充分發(fā)揮多媒體的動畫效果,在例3的講解上,不需要計算器等設備,只需明白數列趨近的方向即可。 教學評價及設計理念 1、學生的思維得到了有效的訓練和提高 在教學過程中始終圍繞教學目標進行評價,師生互動,在教學過程的不同環(huán)節(jié)中及時獲得教學反饋信息,以學生為主體,及時調節(jié)教學措施,完成教學目標。在分層練習中,學生通過積極的思維、練習后對學生的思維又得到了進一步的發(fā)展。 2、本節(jié)課貫徹了新課程的理念 以學生為本,采用啟發(fā)式教學,根據現(xiàn)代建構主義理論,從思維的最近發(fā)展區(qū)出發(fā),通過對學生的循循善誘,激活了學生原有的認知規(guī)律,并為知識結構的優(yōu)化奠定基礎。 專心---專注---專業(yè)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!