湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習(xí) 專題2第2課時 數(shù)列求和與數(shù)學(xué)歸納法課件 理

上傳人:沈*** 文檔編號:48522730 上傳時間:2022-01-10 格式:PPT 頁數(shù):24 大?。?.17MB
收藏 版權(quán)申訴 舉報(bào) 下載
湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習(xí) 專題2第2課時 數(shù)列求和與數(shù)學(xué)歸納法課件 理_第1頁
第1頁 / 共24頁
湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習(xí) 專題2第2課時 數(shù)列求和與數(shù)學(xué)歸納法課件 理_第2頁
第2頁 / 共24頁
湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習(xí) 專題2第2課時 數(shù)列求和與數(shù)學(xué)歸納法課件 理_第3頁
第3頁 / 共24頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習(xí) 專題2第2課時 數(shù)列求和與數(shù)學(xué)歸納法課件 理》由會員分享,可在線閱讀,更多相關(guān)《湖南省洞口一中高考數(shù)學(xué)二輪專題總復(fù)習(xí) 專題2第2課時 數(shù)列求和與數(shù)學(xué)歸納法課件 理(24頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、專題一 函數(shù)與導(dǎo)數(shù)專題二 數(shù)列1高考考點(diǎn)(1)要能夠利用分組、裂項(xiàng)、錯位相減等方法進(jìn)行求和,有時候要結(jié)合不等式證明(2)會利用歸納推理猜想出數(shù)列的結(jié)論并用數(shù)學(xué)歸納法證明2易錯易漏求和中經(jīng)常會在項(xiàng)數(shù)上犯錯,要注意從下標(biāo)上面計(jì)算項(xiàng)數(shù)數(shù)學(xué)歸納法證明問題一定要使用歸納假設(shè)3歸納總結(jié)在選擇求和方法時要注意不同形式選用不同的求和方法在用數(shù)學(xué)歸納法證明問題時,初始值計(jì)算和歸納假設(shè)缺一不可1.等差數(shù)列an中,a1+a2+a50=200,a51+a52+a100=2700,則a1等于()A-1221 B-21.5C-20.5 D-205152100125011()()505025001504950200220.

2、5.aaaaaaddaa 【解因?yàn)椋?,由,析求】?12()11A.1 B.222211.(1) D.222.22nnnnnnnnnnnnnnnaaannSSnC SnS若數(shù)列的通項(xiàng)公式為,則的前項(xiàng)和為 B【解析】利用n的特殊值代入,然后用排除法 2201011.2()2007200820092010A. B. C. D.200823. 009201011 20nfxxbxxnSSf n 已知二次函數(shù)的圖象的對稱軸為直線若數(shù)列的前 項(xiàng)和為,則的值為 220101-1.221111-( )(1)111 1111-2201020112 320102011bbf nnnf nn nnnS【解析】

3、因?yàn)椋杂郑?,所?111111111()(1)(1-)1,2-4( -)221223-233nnnnnnnnnnnnnP naPnaP Paaaaaaaann nSaa【解析】因?yàn)?,所以,所以,故是公差?的等差數(shù)列又,所以,所以12*123()1,2_4.nnnnnnnaaanPnaP PanSN 設(shè) 數(shù) 列滿 足, 且 對 任 意 的, 點(diǎn),都 有, 則的 前 項(xiàng) 和為 ()_5._.nmnm nnSSSmnS等差數(shù)列中,設(shè)其前 項(xiàng)和為 ,若,則2()0.,0nmnm nnSanbnSSmnmnS設(shè)等差數(shù)列前 項(xiàng)和,因?yàn)?,所以該二次函?shù)經(jīng)過點(diǎn),即【解析】 1111111123439

4、2781 (0)1111()1111C111(21). nnnnrncaa acaAnBAnCCB AnBAnCnnnnn nnn :適用于等差、等比數(shù)列或可轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列;如數(shù)列: , ,:適用于其中是各項(xiàng)不為的等差數(shù)列, 為常數(shù) 、部分無理數(shù)列、含階乘的數(shù)列等如公:數(shù)列求和的常用方法式法裂項(xiàng),! !,相消法1CC1111rrnnnnnn ,等 1212222211 2343 9 27 811123221135211123121611111 11()113123452221111()2.nnnnnknknka babn nknknnknn nnn nnnn nnnpqqppq :

5、適用于,其中是等差數(shù)列,是等比數(shù)列如常用結(jié)數(shù)列 , , ,;,論減法;錯位相3. 理解數(shù)學(xué)歸納法原理,正確運(yùn)用數(shù)學(xué)歸納法解決有關(guān)問題加強(qiáng)歸納、猜想、論證的能力通過解決探索性問題,進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想和方法分析問題與解決問題的能力題型一 錯位相減求和【分析】用錯位相減法求數(shù)列的前n項(xiàng)和,但應(yīng)分情況討論【例1】已知數(shù)列an是等差數(shù)列,且a1=2,a1+a2+a3=12.(1) 求數(shù)列an的通項(xiàng)公式;(2) 令bn=anxn(xR)求數(shù)列bn前n項(xiàng)和的公式【解析】 (1)設(shè)數(shù)列an公差為d,則a1+a2+a3=3a1+3d=12,又a1=2,所以d=2.所以an=2n.

6、 122-123121)12.242 -22242 -2211-2()-22 (1-21-2nnnnnnnnnnnnnnnnnSbbbba xnxSxxnxnxxSxxnxnxxx Sxxxnxxxnxx令,則由,得,當(dāng)時,式減去【式,得解析】,22112 (1-)2-(1- )1(1)(1)2 (1-)2-(1)(1- )-12421-1nnnnnnnn nxxnxSxxnxxxSxxSnn nxxx 所以當(dāng)時,可 ,綜上 得 11()1nnnnnnnaba baaaq【點(diǎn)評】常見的三種數(shù)列、其中是等差數(shù)列、是等比數(shù)列 ,分別用分組求和、錯位相減求和、裂項(xiàng)求和,對于等比數(shù)列求和時,需要注意的

7、特殊情況題型二 不等式在數(shù)列中的應(yīng)用 21120(1,2)32nnnnnnnnnaqnSnqbaabnTST設(shè)等比數(shù)列的公比為 ,前 項(xiàng)和, 求 的取值范圍;設(shè),記的前 項(xiàng)和為 ,試比【例 】與2較的大小1210(1,2)0nnnnnnnnnSnaqSqaaabaST, 包含,用 來表示,從而得到 的不等式;將,轉(zhuǎn)化為 ,從而得到 與的關(guān)系,也就得出與【分析】的關(guān)系 111000.10110110 (1,2)110(1,2)1010(1,2)110nnnnnnnnaSaqqSnaaqqSqqnqqnqqnq 因?yàn)槭堑缺葦?shù)列,可得,當(dāng)時,;當(dāng)時,即,上式等價(jià)于不等式【解析組】, 或, 22122

8、1110.33()223().231(1)()2221,0(02)nnnnnnnnnnnqnqqqbaaba qqTqq STSSqqSqq 解式得;解,由于 可為奇數(shù)、可為偶數(shù),得且綜上, 的取值范,圍是,于是由得010012002111220.202nnnnnnnnnnnnnqqTSTSSqqqqTSTqTSTSqS 當(dāng)且,即;當(dāng)又因?yàn)?,且或,所以,?dāng)或時或時,即;,即【點(diǎn)評】這是一道數(shù)列與不等式相結(jié)合的試題,在新課程高考中,這種不同知識點(diǎn)的交匯,對考查學(xué)生的能力具有很好的作用 題型三 數(shù)列綜合問題【分析】先求出數(shù)列an+1-an的通項(xiàng),再由累加法求出數(shù)列an的通項(xiàng)公式,對于數(shù)列bn也是同

9、樣的方法;an-bn最小值的確定方式,利用從特殊到一般的演繹法來求解【例3】數(shù)列an、bn滿足a3=b3=6,a4=b4=4,a5=b5=3,且an+1-an(nN*)是等差數(shù)列,bn-2(nN*)是等比數(shù)列(1)求數(shù)列an、bn的通項(xiàng)公式;(2)n取何值時,an-bn取到最小正值?試證明你的結(jié)論 113434544331-1-1-254432*3-2-1-1-3-5-5.-6-7-1-2( -3)( -8)111-18()222-21nnnnnnnnnnnnnnnncaaaadcaacaadccccnnaanaaaaaaaannnnaaannnNdb【解析】 設(shè),數(shù)列的公差為 ,則,所以,所

10、以,所以所以,即,所以設(shè)433443-3-35-5-*3-21-24-22214 ( )222()2nnnnnnnbqddbdbqddd qbnN,數(shù)列的公比是 ,則,所以,所以,所以 1122112233445566776677*111318910-5-1-0171-2426-71(2)7-421( )(7)-21kkkabababababababababnabnabnk kkNabnkank【解析】由得,所以有,猜想:當(dāng)時,取到最小正值下面用數(shù)學(xué)歸納法給予證明: 當(dāng)時,;假設(shè),時,那么,當(dāng)時,那么,當(dāng)22111111111-118(-18)-52222kakkkkk時,1661111111-5-5-5.22117-5221-.121() ( ).6-2-7kkkkkkkknnakbkbkkabkbabnknaanbb又因?yàn)?,所以,即所以?dāng)時,猜想也成立由、 知,對任意不小于 的正整數(shù) ,均有綜上所述,當(dāng)時,取到最小正值【點(diǎn)評】本題主要考查等差數(shù)列、等比數(shù)列的定義,用累加法求數(shù)列的通項(xiàng),其中在求“n取何值時,an-bn取到最小正值”這一問中,用歸納猜想證明是十分常用的方法另外,本題也可用函數(shù)單調(diào)性證明

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!