高三數(shù)學(xué)高考基礎(chǔ)復(fù)習(xí)課件:第三章第5課時數(shù)列的通項與求和

上傳人:無*** 文檔編號:56128320 上傳時間:2022-02-20 格式:PPT 頁數(shù):12 大?。?41KB
收藏 版權(quán)申訴 舉報 下載
高三數(shù)學(xué)高考基礎(chǔ)復(fù)習(xí)課件:第三章第5課時數(shù)列的通項與求和_第1頁
第1頁 / 共12頁
高三數(shù)學(xué)高考基礎(chǔ)復(fù)習(xí)課件:第三章第5課時數(shù)列的通項與求和_第2頁
第2頁 / 共12頁
高三數(shù)學(xué)高考基礎(chǔ)復(fù)習(xí)課件:第三章第5課時數(shù)列的通項與求和_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三數(shù)學(xué)高考基礎(chǔ)復(fù)習(xí)課件:第三章第5課時數(shù)列的通項與求和》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)高考基礎(chǔ)復(fù)習(xí)課件:第三章第5課時數(shù)列的通項與求和(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、要點疑點考點 課 前 熱 身 能力思維方法 延伸拓展誤 解 分 析第5課時 數(shù)列的通項與求和求數(shù)列的前求數(shù)列的前n項和項和Sn,重點應(yīng)掌握以下幾種方法:重點應(yīng)掌握以下幾種方法: 1.1.倒序相加法:倒序相加法:如果一個數(shù)列如果一個數(shù)列an,與首末兩項等距的兩項之與首末兩項等距的兩項之和等于首末兩項之和,可采用把正著寫和與倒著寫和的兩個和等于首末兩項之和,可采用把正著寫和與倒著寫和的兩個和式相加,就得到一個常數(shù)列的和,這一求和的方法稱為倒和式相加,就得到一個常數(shù)列的和,這一求和的方法稱為倒序相加法序相加法. 2.2.錯位相減法:錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列與一如果一個數(shù)列的各項

2、是由一個等差數(shù)列與一個等比數(shù)列對應(yīng)項乘積組成,此時求和可采用錯位相減法個等比數(shù)列對應(yīng)項乘積組成,此時求和可采用錯位相減法. 3.3.分組轉(zhuǎn)化法:分組轉(zhuǎn)化法:把數(shù)列的每一項分成兩項,或把數(shù)列的項把數(shù)列的每一項分成兩項,或把數(shù)列的項“集集”在一塊重新組合,或把整個數(shù)列分成兩部分,使其轉(zhuǎn)在一塊重新組合,或把整個數(shù)列分成兩部分,使其轉(zhuǎn)化為等差或等比數(shù)列,這一求和方法稱為分組轉(zhuǎn)化法化為等差或等比數(shù)列,這一求和方法稱為分組轉(zhuǎn)化法. 4.4.裂項相消法:裂項相消法:把數(shù)列的通項拆成兩項之差,即數(shù)列的每一把數(shù)列的通項拆成兩項之差,即數(shù)列的每一項都可按此法拆成兩項之差,在求和時一些正負(fù)項相互抵消,項都可按此法拆

3、成兩項之差,在求和時一些正負(fù)項相互抵消,于是前于是前n項的和變成首尾若干少數(shù)項之和,這一求和方法稱項的和變成首尾若干少數(shù)項之和,這一求和方法稱 為裂項相消法為裂項相消法. 5.公式法求和:公式法求和:所給數(shù)列的通項是關(guān)于所給數(shù)列的通項是關(guān)于n的多項式,此時求的多項式,此時求和可采用公式法求和,常用的公式有:和可采用公式法求和,常用的公式有:121211nnnknk121612122212nnnnknk223331314121nnnknk返回返回課課 前前 熱熱 身身1.數(shù)列數(shù)列an的前的前n項和項和Sn=n2+1,則則an=_. 2.已知已知an的前的前n項和項和Sn=n2-4n+1,則則|a

4、1|+|a2|+|a10|=( ) (A)67 (B)65 (C)61 (D)56 3.一個項數(shù)是偶數(shù)的等比數(shù)列,它的偶數(shù)項的和是奇數(shù)項一個項數(shù)是偶數(shù)的等比數(shù)列,它的偶數(shù)項的和是奇數(shù)項和的和的2倍,又它的首項為倍,又它的首項為1,且中間兩項的和為,且中間兩項的和為24,則此等,則此等比數(shù)列的項數(shù)為比數(shù)列的項數(shù)為( ) (A)12 (B)10 (C)8 (D)6 AC11122nnn,5.數(shù)列數(shù)列 的前的前n項之和項之和為為Sn,則則Sn的值得等于的值得等于( )(A) (B) (C) (D) ,nn2112161781541321112211-nnnn2112nnn21122nnn2112 4

5、.計算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制進(jìn)行處理的,二進(jìn)計算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制進(jìn)行處理的,二進(jìn)制即制即“逢逢2進(jìn)進(jìn)1”,如,如(1101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成表示二進(jìn)制數(shù),將它轉(zhuǎn)換成十進(jìn)制形式是十進(jìn)制形式是123+122+021+120=13,那么將二進(jìn),那么將二進(jìn)制數(shù)制數(shù)(11111)2位轉(zhuǎn)換成十進(jìn)制形式是位轉(zhuǎn)換成十進(jìn)制形式是( ) (A) 217-2 (B) 216-2 (C) 216-1 (D)215-1 16CA返回返回1.求下列各數(shù)列前求下列各數(shù)列前n項的和項的和Sn: (1) 14,25,36,n(n+3)(2) (3),11095555555n,21531421311nn【解題回顧

6、】對類似數(shù)列【解題回顧】對類似數(shù)列(3)的求和問題,我們可以推廣的求和問題,我們可以推廣到一般情況:設(shè)到一般情況:設(shè)an是公差為是公差為d的等差數(shù)列,則有的等差數(shù)列,則有特別地,以下等式都是式的具體應(yīng)用:特別地,以下等式都是式的具體應(yīng)用:n-nnaaaaaad-naaa321212111111上述方法也稱為上述方法也稱為“升次裂項法升次裂項法”.11111-nnnn1211212112121nnnn;2111121211nnnnnnn2.求數(shù)列求數(shù)列a,2a2,3a3,nan,(a為常數(shù)為常數(shù))的前的前n項的項的和和. 【解題回顧】若一個數(shù)列的各項是由一個等差數(shù)列與一個【解題回顧】若一個數(shù)列的

7、各項是由一個等差數(shù)列與一個等比數(shù)列的對應(yīng)項乘積組成,則求此數(shù)列的前等比數(shù)列的對應(yīng)項乘積組成,則求此數(shù)列的前n n項和多采項和多采用錯位相減法用錯位相減法【解題回顧】當(dāng)本題解出【解題回顧】當(dāng)本題解出Sn+1/Sn=(n+1)2/(n+2)n,下面要下面要想到迭代法求想到迭代法求Sn,(即選乘即選乘),同樣如得出,同樣如得出Sn+1-Sn=f(n),可用迭差可用迭差. 3.已知數(shù)列已知數(shù)列an中的中的a1=1/2,前前n項和為項和為Sn若若Sn=n2an,求求Sn與與an的表達(dá)式的表達(dá)式. 4若數(shù)列若數(shù)列an中,中,an=-2n-(-1) n,求求S10和和S99 【解題回顧】若構(gòu)成數(shù)列的項中含有

8、【解題回顧】若構(gòu)成數(shù)列的項中含有(-1)n,則在求和則在求和Sn時,一般要考慮時,一般要考慮n是奇數(shù)還是偶數(shù)是奇數(shù)還是偶數(shù). 返回返回返回返回5.在數(shù)列在數(shù)列an中,中,an0, 2Sn = an +1(nN) 求求Sn和和an的表達(dá)式;的表達(dá)式; 求證:求證:21111321nSSSS【解題回顧】利用【解題回顧】利用 ,再用裂項法求和再用裂項法求和.利用利用此法求和時,要細(xì)心觀察相消的規(guī)律,保留哪些項等此法求和時,要細(xì)心觀察相消的規(guī)律,保留哪些項等.必必要時可適當(dāng)?shù)囟鄬懸恍╉?,防止漏項或增項要時可適當(dāng)?shù)囟鄬懸恍╉棧乐孤╉椈蛟鲰? 1-112nnn2求數(shù)列前求數(shù)列前n項和時,一定要數(shù)清項數(shù),選好方法,否項和時,一定要數(shù)清項數(shù),選好方法,否則易錯則易錯1.求數(shù)列通項時,漏掉求數(shù)列通項時,漏掉n=1時的驗證是致命錯誤時的驗證是致命錯誤. 返回返回

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!