《九年級(jí)數(shù)學(xué)上冊(cè) 梯形課件 青島版》由會(huì)員分享,可在線閱讀,更多相關(guān)《九年級(jí)數(shù)學(xué)上冊(cè) 梯形課件 青島版(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、梯形梯形 復(fù)習(xí)目標(biāo)復(fù)習(xí)目標(biāo):梯形概念及相關(guān)概念,等腰梯形的:梯形概念及相關(guān)概念,等腰梯形的性質(zhì)、性質(zhì)、判定及其應(yīng)用;梯形中位線的性質(zhì)。判定及其應(yīng)用;梯形中位線的性質(zhì)。重點(diǎn)重點(diǎn):等腰梯形的性質(zhì)、判定及梯形中位線的性質(zhì)。等腰梯形的性質(zhì)、判定及梯形中位線的性質(zhì)。難點(diǎn):難點(diǎn):梯形中輔助線的添加。梯形中輔助線的添加。問(wèn)題:?jiǎn)栴}:1 1、什么是梯形、直角梯形、等腰梯形?、什么是梯形、直角梯形、等腰梯形?2 2、等腰梯形有哪些性質(zhì)?等腰梯形判定方法有哪些?、等腰梯形有哪些性質(zhì)?等腰梯形判定方法有哪些?3 3、梯形中常需要作的輔助線有哪些?、梯形中常需要作的輔助線有哪些?結(jié)合結(jié)合“全品中考復(fù)習(xí)方案全品中考復(fù)習(xí)
2、方案”50515051頁(yè)考點(diǎn),找到以上問(wèn)頁(yè)考點(diǎn),找到以上問(wèn)題的答案。時(shí)間:題的答案。時(shí)間:3 3分鐘分鐘如圖如圖2, 兩條腰相等的梯形叫做等腰梯形兩條腰相等的梯形叫做等腰梯形.二二: 特殊的梯形有哪些特殊的梯形有哪些? ?如圖如圖1,一條腰和底垂直的梯形叫做直角梯形,一條腰和底垂直的梯形叫做直角梯形.圖圖2ABCD圖圖1ABCD一一: :定義定義 一組對(duì)邊一組對(duì)邊平行平行而另一組對(duì)邊而另一組對(duì)邊不平行不平行的四邊形叫做梯形的四邊形叫做梯形.知識(shí)梳理知識(shí)梳理1 1、等腰梯形有什么性質(zhì)?、等腰梯形有什么性質(zhì)?2 2、等腰梯形有哪些判定方法等腰梯形有哪些判定方法?(2 2)等腰梯形)等腰梯形同一底上
3、的兩角同一底上的兩角相等相等. .(3 3)等腰梯形)等腰梯形對(duì)角線對(duì)角線相等相等. .(2 2)同一底上的兩角相等同一底上的兩角相等的梯形是等腰梯形的梯形是等腰梯形. .BDCA(1)(1)兩腰相等兩腰相等的梯形是等腰梯形的梯形是等腰梯形(4)(4)等腰梯形是軸對(duì)稱圖等腰梯形是軸對(duì)稱圖形形,對(duì)稱軸是一底的中垂線對(duì)稱軸是一底的中垂線三三 :等腰梯形的性質(zhì)和判定:等腰梯形的性質(zhì)和判定(3 3)兩條對(duì)角線相等兩條對(duì)角線相等的梯形是等腰梯形。的梯形是等腰梯形。(1 1)等腰梯形的)等腰梯形的兩腰兩腰相等。相等。(邊邊)(角角)(對(duì)角線對(duì)角線)(邊邊)(角角)(對(duì)角線對(duì)角線)練習(xí)11 1、(、(201
4、02010廣東廣州)如圖,在等腰梯形廣東廣州)如圖,在等腰梯形ABCDABCD中,中,ADADBCBC求證:求證:A AC C180180ABCD證明:證明:梯形梯形ABCDABCD是等腰梯形,是等腰梯形,B BC C又又ADADBCBC,A AB B180180A AC C180180挑戰(zhàn)中考題挑戰(zhàn)中考題2 2、(、(2010 2010 四川南充)四川南充)如圖,梯形ABCD中,ADBC,點(diǎn)M是BC的中點(diǎn),且MAMD求證:四邊形ABCD是等腰梯形ADCMB證明:MAMD,DAMADMADBC,AMBDAM,DMCADMAMBDMC又點(diǎn)M是BC的中點(diǎn),BMCM在AMB和DMC中,,AMDMAM
5、BDMCBMCM AMBDMCABDC,四邊形ABCD是等腰梯形 四、梯形的中位線四、梯形的中位線1 1、定義:、定義:連接梯形連接梯形兩腰中點(diǎn)的線段兩腰中點(diǎn)的線段,叫梯形的中位線。,叫梯形的中位線。2 2、性質(zhì):、性質(zhì):梯形的中位線平行于梯形的中位線平行于_,_,并且等于并且等于_。兩底兩底兩底和的一半兩底和的一半ABDCEF五、梯形的面積:五、梯形的面積:梯形的面積(上底下底)高中位線中位線高高, ();();21EFEF是梯形是梯形ABCDABCD的中位線的中位線練習(xí)2挑戰(zhàn)中考題挑戰(zhàn)中考題(20102010江蘇無(wú)錫)江蘇無(wú)錫)如圖,梯形如圖,梯形ABCDABCD中,中,ADADBCBC,
6、EFEF是梯形的中位線,對(duì)角線是梯形的中位線,對(duì)角線ACAC交交EFEF于于G G,若,若BCBC=10cm=10cm,EFEF=8cm=8cm,則,則GFGF的長(zhǎng)等于的長(zhǎng)等于 cmcm3.延長(zhǎng)兩腰交于一點(diǎn)延長(zhǎng)兩腰交于一點(diǎn) 作用:使梯形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題,作用:使梯形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題, 若是等腰梯形則得到等腰三角形。若是等腰梯形則得到等腰三角形。A B D C E 1.平移一腰平移一腰 作用:使梯形問(wèn)題轉(zhuǎn)化為平行四邊形作用:使梯形問(wèn)題轉(zhuǎn)化為平行四邊形 及三角形問(wèn)題。及三角形問(wèn)題。 CE等于上、下底的差等于上、下底的差A(yù) B D C E 2.作高作高 作用:使梯形問(wèn)題轉(zhuǎn)化為直角三角形作用:
7、使梯形問(wèn)題轉(zhuǎn)化為直角三角形 及矩形問(wèn)題。及矩形問(wèn)題。 A B D C E F 六、梯形中常需要作的輔助線有哪些?六、梯形中常需要作的輔助線有哪些?5. 當(dāng)有一腰中點(diǎn)時(shí),連結(jié)一個(gè)頂當(dāng)有一腰中點(diǎn)時(shí),連結(jié)一個(gè)頂點(diǎn)與一腰中點(diǎn)并延長(zhǎng)與一個(gè)底點(diǎn)與一腰中點(diǎn)并延長(zhǎng)與一個(gè)底的延長(zhǎng)線相交。的延長(zhǎng)線相交。 作用:可得作用:可得ADE FCE, BF等于上、下底的和等于上、下底的和.CBFEDA4.平移一條對(duì)角線平移一條對(duì)角線 作用:得到平行四邊形作用:得到平行四邊形ACED,使使CE=AD,BE等于上、下底等于上、下底的和的和.A B C D E 挑戰(zhàn)中考題挑戰(zhàn)中考題ADBC7040BC ,3AD 10BC 1、(
8、20092009年寧波市)年寧波市)如圖,梯形ABCD中,若,則CD的長(zhǎng)是 ABCDE7挑戰(zhàn)中考題挑戰(zhàn)中考題2、(、(2010山東威海)山東威海)如圖,在梯形ABCD中,ABCD,ADBC,對(duì)角線ACBD,垂足為O若CD3,AB5,則AC的長(zhǎng)為 522433A B4 C DCABDOEA挑戰(zhàn)中考題挑戰(zhàn)中考題3、(2010山東日照)已知等腰梯形的底角為45o,高為2,上底為2,則其面積為(A)2 (B)6 (C)8 (D)12ABCDFE()聰明的你()聰明的你, ,想一想今日我們復(fù)習(xí)了梯形想一想今日我們復(fù)習(xí)了梯形的哪些內(nèi)容的哪些內(nèi)容? ?()在梯形學(xué)習(xí)中()在梯形學(xué)習(xí)中, ,我們經(jīng)常使用哪一我們經(jīng)常使用哪一種數(shù)學(xué)思想種數(shù)學(xué)思想? ?轉(zhuǎn)化思想轉(zhuǎn)化思想作業(yè)作業(yè) 全品中考復(fù)習(xí)方案:課時(shí)作業(yè)(三十) 必做題:1、2、3、4、5、9、10、11、15、18 其余題選作