1010 抽樣方法 總體分布的估計(jì)

上傳人:痛*** 文檔編號(hào):60654450 上傳時(shí)間:2022-03-08 格式:DOCX 頁數(shù):9 大?。?63.56KB
收藏 版權(quán)申訴 舉報(bào) 下載
1010 抽樣方法 總體分布的估計(jì)_第1頁
第1頁 / 共9頁
1010 抽樣方法 總體分布的估計(jì)_第2頁
第2頁 / 共9頁
1010 抽樣方法 總體分布的估計(jì)_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《1010 抽樣方法 總體分布的估計(jì)》由會(huì)員分享,可在線閱讀,更多相關(guān)《1010 抽樣方法 總體分布的估計(jì)(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、10.10 抽樣方法 總體分布的估計(jì) 一、明確復(fù)習(xí)目標(biāo)   1.會(huì)用隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣等常用的抽樣方法從總體中抽取樣本 2.會(huì)用樣本頻率分布去估計(jì)總體分布 3.了解正態(tài)分布的意義及主要性質(zhì) 4.了解線性回歸的方法和簡單應(yīng)用 二.建構(gòu)知識(shí)網(wǎng)絡(luò) 1.簡單隨機(jī)抽樣:設(shè)一個(gè)總體的個(gè)體數(shù)為N.如果通過逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱這樣的抽樣為簡單隨機(jī)抽樣. ⑴簡單隨機(jī)抽樣的特點(diǎn):逐個(gè)抽取,不放回抽樣,各個(gè)個(gè)體被抽到的概率相等.簡單隨機(jī)抽樣方法是其他更復(fù)雜抽樣方法的基礎(chǔ). (2)簡單隨機(jī)抽樣的兩種方法: ①抽簽法:編號(hào)寫簽,

2、攪拌均勻,逐個(gè)抽取.先后抽取概率均等. 抽簽法簡便易行,適用于個(gè)體數(shù)不太多總體.   ②隨機(jī)數(shù)表法:“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開始的數(shù)字;第三步,獲取樣本號(hào)碼 2.系統(tǒng)抽樣:當(dāng)總體中的個(gè)體數(shù)較多時(shí),可將總體分成均衡的幾個(gè)部分,然后按預(yù)先定出的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到需要的樣本,這種抽樣叫做系統(tǒng)抽樣. 系統(tǒng)抽樣的步驟:(總體中的個(gè)體的個(gè)數(shù)為N,樣本容量為n) ①采用隨機(jī)的方式將總體中的個(gè)體編號(hào).為簡便起見,有時(shí)可直接采用個(gè)體所帶有的號(hào)碼,如考生的準(zhǔn)考證號(hào)、街道上各戶的門牌號(hào),等等 ②確定分段(部分)的間隔k當(dāng)是整數(shù)時(shí),k=;當(dāng)不是整數(shù)時(shí),

3、先從總體中用簡單隨機(jī)抽樣剔除一些個(gè)體,使剩下的總體中個(gè)體數(shù)能被n整除,取k=. ③在第一段用簡單隨機(jī)抽樣確定起始的個(gè)體編號(hào). ④按照事先確定的規(guī)則抽取樣本(通常是將加上間隔k,得到第2個(gè)編號(hào)+k,第3個(gè)編號(hào)+2k,……) 與簡單隨機(jī)抽樣一樣,系統(tǒng)抽樣是等概率抽樣,它是客觀的、公平的. 可以證明:當(dāng)n不能整除N時(shí),先刎除的個(gè)體與其它個(gè)體一樣,被抽的概率也是1/N. 3.分層抽樣: 當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更充分地反映總體的情況,常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,所分成的部分叫做層. 簡單隨機(jī)抽樣,系統(tǒng)抽樣,分層抽

4、樣都是等概率抽樣,簡單隨機(jī)抽樣是基礎(chǔ),系統(tǒng)抽樣的第一部分和分層抽樣的每一層都采用簡單隨機(jī)抽樣. 隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣 4.頻率分布:用樣本估計(jì)總體,是研究統(tǒng)計(jì)問題的基本思想方法,樣本中所有數(shù)據(jù)(或數(shù)據(jù)組)的頻數(shù)和樣本容量的比,就是該數(shù)據(jù)的頻率.所有數(shù)據(jù)(或數(shù)據(jù)組)的頻率的分布變化規(guī)律叫做樣本的頻率分布.可以用樣本頻率表、樣本頻率分布條形圖或頻率分布直方圖來表示. 5.總體分布:從總體中抽取一個(gè)個(gè)體,就是一次隨機(jī)試驗(yàn),從總體中抽取一個(gè)容量為n的樣本,就是進(jìn)行了n次試驗(yàn),試驗(yàn)連同所出現(xiàn)的結(jié)果叫隨機(jī)事件,所有這些事件的概率分布規(guī)律稱為總體分布. 總體分布是不易知道的,通常

5、用“樣本頻率分布估計(jì)總體分布”,這是統(tǒng)計(jì)的基本思想方法,樣本容量越大,估計(jì)越精確. 總體密度曲線 b a x O y 6.總體密度曲線:如果ξ是連續(xù)型隨機(jī)變量,就把ξ的取值區(qū)間分組,當(dāng)樣本容量無限增大,分組的組距無限縮小,各組的頻率就越接近于總體在相應(yīng)各組取值的概率,那么頻率分布直方圖就會(huì)無限接近于一條光滑曲線,這條曲線叫做總體密度曲線. 它反映了總體在各個(gè)范圍內(nèi)取值的概率.根據(jù)這條曲線,可求出總體在區(qū)間(a,b)內(nèi)取值的概率等于該區(qū)間上總體密度曲線與x軸、直線x=a、x=b所圍成曲邊梯形的面積。   總體分布密度密度曲線函數(shù)y=f

6、(x)的兩條基本性質(zhì):   ①f(x) ≥0(x∈R);②由曲線y=f(x)與x軸圍成面積為1。 7.正態(tài)分布: 象測量的誤差、產(chǎn)品的尺寸等總體分布密度曲線可用 ,(σ>0,-∞<x<∞) 近似表示,這樣的分布中正態(tài)分布, 記為,f(x)叫正態(tài)分布密度函數(shù).其中π是圓周率;e是自然對數(shù)的底;x是隨機(jī)變量的取值;μ為正態(tài)分布的均值;σ是正態(tài)分布的標(biāo)準(zhǔn)差. (1)正態(tài)分布由參數(shù)μ、σ唯一確定,如果隨機(jī)變量~N(μ,σ2),根據(jù)定義有:μ=E,σ=D。 (2)正態(tài)曲線具有以下性質(zhì): ①在x軸的上方,與x軸不相交。 ②關(guān)于直線x =μ對稱。 ③在x =μ時(shí)位于最高點(diǎn)。 ④當(dāng)x <

7、μ時(shí),曲線上升;當(dāng)x >μ時(shí),曲線下降。并且當(dāng)曲線向左、右兩邊無限延伸時(shí),以x軸為漸近線,向它無限靠近。 ⑤當(dāng)μ一定時(shí),曲線的形狀由σ確定。σ越大,曲線越“矮胖”,表示總體越分散;σ越小,曲線越“瘦高”,表示總體的分布越集中。 8.標(biāo)準(zhǔn)正態(tài)曲線:當(dāng)μ=0、σ=l時(shí),叫標(biāo)準(zhǔn)正態(tài)總體, 分布密度函數(shù):,(-∞<x<+∞),相應(yīng)的曲線叫標(biāo)準(zhǔn)正態(tài)曲線. 標(biāo)準(zhǔn)正態(tài)總體N(0,1)中,總體取值小于的概率,P(x0時(shí), 可由標(biāo)準(zhǔn)正態(tài)分布表查得.當(dāng)時(shí),; Φ(0)=0.5.. 任何正態(tài)分布的概率問題均可通過轉(zhuǎn)化成標(biāo)準(zhǔn)正態(tài)總體. 9.假設(shè)檢驗(yàn)的思想:小概率事件不能

8、發(fā)生——假設(shè)某種指標(biāo)服從正態(tài)分布N(μ,σ2);(2)確定一次試驗(yàn)中的取值a;(2)作出統(tǒng)計(jì)推斷:若a∈(μ-3σ,μ+3σ),則接受假設(shè),若a(μ-3σ,μ+3σ),則拒絕假設(shè). 10.線性回歸: 變量與變量之間的關(guān)系大致可分為為兩類:確定的函數(shù)關(guān)系,和不確定的相關(guān)關(guān)系,不確定的兩變量之間也有規(guī)律可循,回歸分析就是研究這種相關(guān)關(guān)系的一種數(shù)理統(tǒng)計(jì)方法. 如果n組數(shù)據(jù)(x1,y1), (x2,y2),……(xn,yn)對應(yīng)的點(diǎn)大致分布在一條直線附近,這條直線就叫回歸直線,方程為,其中a、b是待定系數(shù). ,, , 三、雙基題目練練手 1.一個(gè)容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和

9、頻率分別為40、0.125,則n的值為 ( ) A.640 B.320 C.240 D.160 2.(2006江蘇)某人5次上班途中所花的時(shí)間(單位:分鐘)分別為x,y,10,11,9.已知這組數(shù)據(jù)的平均數(shù)為10,方差為2,則|x-y|的值為( ) (A)1     (B)2      (C)3     (D)4 3.(2006重慶)為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為歲-18歲的男生體重(㎏),得到頻率分布直方圖如下:根據(jù)上圖可得這100名學(xué)生中體重在的學(xué)生人數(shù)是 (

10、 ) (A)20 (B)30 (C)40 (D)50 4.某廠生產(chǎn)的零件外直徑ξ~N(8.0,1.52)(mm),今從該廠上、下午生產(chǎn)的零件中各隨機(jī)取出一個(gè),測得其外直徑分別為7.9 mm和7.5 mm,則可認(rèn)為 A.上、下午生產(chǎn)情況均為正常 B.上、下午生產(chǎn)情況均為異常 C.上午生產(chǎn)情況正常,下午生產(chǎn)情況異常 D.上午生產(chǎn)情況異常,下午生產(chǎn)情況正常 5. 隨機(jī)變量ξ~N(0,1),如果P(ξ<1)=0.8413,則P(-1<ξ<0)=_______. 6.為考慮廣告費(fèi)用x與銷售額y之間的關(guān)系,抽取了5家餐廳,得到如下數(shù)據(jù):(表中單位是

11、千元) 廣告費(fèi) 1.0 4.0 6.0 10.0 14.0 銷售額 19.0 44.0 40.0 52.0 53.0 現(xiàn)要使銷售額達(dá)到6萬元,則需廣告費(fèi)用為______.(保留兩位有效數(shù)字) ◆答案:1-4.BDCC; 4.根據(jù)3σ原則,在8+3×1.5=8.45,與8-3×1.5=7.55,之外時(shí)為異常.答案:C; 5.P(-1<ξ<0)=P(0<ξ<1)=Φ(1)-Φ(0)=0.8413-0.5=0.3413. 6.先求出回歸方程=bx+a,令=6,得x=1.5萬元. 答案:1.5萬元 四、經(jīng)典例題做一做 【例1】某批零件共160個(gè),其中,一級品

12、48個(gè),二級品64個(gè),三級品32個(gè),等外品16個(gè).從中抽取一個(gè)容量為20的樣本.請說明分別用簡單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣法抽取時(shí)總體中的每個(gè)個(gè)體被取到的概率均相同. 解:(1)簡單隨機(jī)抽樣法:可采取抽簽法,將160個(gè)零件按1~160編號(hào),相應(yīng)地制作1~160號(hào)的160個(gè)簽,從中隨機(jī)抽20個(gè).顯然每個(gè)個(gè)體被抽到的概率為=. (2)系統(tǒng)抽樣法:將160個(gè)零件從1至160編上號(hào),按編號(hào)順序分成20組,每組8個(gè).然后在第1組用抽簽法隨機(jī)抽取一個(gè)號(hào)碼,如它是第k號(hào)(1≤k≤8),則在其余組中分別抽取第k+8n(n=1,2,3,…,19)號(hào),此時(shí)每個(gè)個(gè)體被抽到的概率為. (3)分層抽樣法:按比例

13、=,分別在一級品、二級品、三級品、等外品中抽取48×=6個(gè),64×=8個(gè),32×=4個(gè),16×=2個(gè),每個(gè)個(gè)體被抽到的概率分別為,,,,即都是. 綜上可知,無論采取哪種抽樣,總體的每個(gè)個(gè)體被抽到的概率都是. 點(diǎn)評:三種抽樣方法的共同點(diǎn)就是每個(gè)個(gè)體被抽到的概率相同,這樣樣本的抽取體現(xiàn)了公平性和客觀性. y a ox 3 x 2 1 【例2】設(shè)隨機(jī)變量ξ的概率密度函數(shù)為 , 求(1)常數(shù)a的值; (2)P(ξ<2)及F(x)=P(ξ

14、)=P(ξ

15、即1-P(ξ<80)≥1-0.01,∴P(ξ<80)≤0.01. ∴Φ()≤0.01=Φ(-2.327). ∴≤-2.327. ∴d≤81.1635. 故d至少為81.1635. ◆提煉方法:(1)若ξ~N(μ,σ),則η=~N(0,1).(2)標(biāo)準(zhǔn)正態(tài)分布的密度函數(shù)f(x)是偶函數(shù),x<0時(shí),f(x)為增函數(shù),x>0時(shí),f(x)為減函數(shù). 【例4】 (2006湖北)在某校舉行的數(shù)學(xué)競賽中,全體參賽學(xué)生的競賽成績近似服從正態(tài)分布N(70,100)。已知成績在90分以上(含90分)的學(xué)生有12名。 (Ⅰ)試問此次參賽的學(xué)生總數(shù)約為多少人? (Ⅱ)若該校計(jì)劃獎(jiǎng)勵(lì)競賽成績排在前50名的

16、學(xué)生,試問設(shè)獎(jiǎng)的分?jǐn)?shù)約為多少分? 可供查閱的(部分)標(biāo)準(zhǔn)正態(tài)分布表 x0 0 1 2 3 4 5 6 7 8 9 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278

17、 0.9292 0.9306 0.9319 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 解:(1)設(shè)參賽學(xué)生的分布數(shù)為ξ,因

18、為ξ~N(70,100),由條件知: 這說明成績在90分以上(含90分)的學(xué)生人數(shù)約占全體參賽人數(shù)的2.28% 因此,參賽總?cè)藬?shù)約為 (2)假定設(shè)獎(jiǎng)的分?jǐn)?shù)線為分,則 即,查表得,解得 故設(shè)獎(jiǎng)的分?jǐn)?shù)線約為83分. 【研討.欣賞】 設(shè)有一樣本x1,x2,…,xn,其標(biāo)準(zhǔn)差為sx,另有一樣本y1,y2,…,yn,其中yi=3xi+2(i=1,2,…,n),其標(biāo)準(zhǔn)差為sy,求證:sy=3sx. 證明:∵=, ∴= = ==3+2. ∴sy2=[(y12+y22+…+yn2)-n 2] =[(3x1+2)2+(3x2+2)2+…+(3xn+2)2-n(3+2)2]

19、 =[9(x12+x22+…+xn2)+12(x1+x2+…+xn)+4n-n(92+12+4)] =[(x12+x22+…+xn2)-n2]=9sx2. ∵sx≥0,sy≥0, ∴sy=3sx. 五.提煉總結(jié)以為師 1、理解三種抽樣方法的特點(diǎn); 2、用樣本的頻率去估計(jì)總體分布; 3、正態(tài)分布的意義、主要性質(zhì)及應(yīng)用; 4、了解線性回歸的方法,會(huì)求線性回歸方程。 同步練習(xí) 10.10 抽樣方法 總體分布的估計(jì) 【選擇題】 1.一個(gè)總體中共有10個(gè)個(gè)體,用簡單隨機(jī)抽樣的方法從中抽取一容量為3的樣本,則某特定個(gè)體入樣的概率是 A. B. C.

20、 D. 2. 某公司在甲、乙、丙、丁四個(gè)地區(qū)分別有150個(gè)、120個(gè)、180個(gè)、150個(gè)銷售點(diǎn).公司為了調(diào)查產(chǎn)品銷售的情況,需從這600個(gè)銷售點(diǎn)中抽取一個(gè)容量為100的樣本,記這項(xiàng)調(diào)查為①;在丙地區(qū)中有20個(gè)特大型銷售點(diǎn),要從中抽取7個(gè)調(diào)查其銷售收入和售后服務(wù)情況,記這項(xiàng)調(diào)查為②.則完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是 A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機(jī)抽樣法 C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機(jī)抽樣法,分層抽樣法 分析:此題為抽樣方法的選取問題.當(dāng)總體中個(gè)體較多時(shí)宜采用系統(tǒng)抽樣;當(dāng)總體中的個(gè)體差異較大時(shí),宜采用分層抽樣;當(dāng)總體中個(gè)體較少時(shí),宜采用隨機(jī)

21、抽樣. 3.(2004年江蘇,6)某校為了了解學(xué)生的課外閱讀情況,隨機(jī)調(diào)查了50名學(xué)生,得到他們在某一天各自課外閱讀所用時(shí)間的數(shù)據(jù),結(jié)果用下面的條形圖表示.根據(jù)條形圖可得這50名學(xué)生這一天平均每人的課外閱讀時(shí)間為( ) A.0.6 h B.0.9 h C.1.0 h D.1.5 h 4..如果隨機(jī)變量ξ~N(μ,σ2),且Eξ=3,Dξ=1, 則P(-1<ξ≤1)等于 ( ) A.2Φ(1)-1 B.Φ(4)-Φ(2) C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2) 【填空題】 5.(2003全國)某公司生產(chǎn)三種型號(hào)的轎車,產(chǎn)

22、量分別為1200輛、6000輛和2000輛,為檢驗(yàn)該公司的產(chǎn)品質(zhì)量,現(xiàn)用分層抽樣的方法抽取46輛進(jìn)行檢驗(yàn),這三種型號(hào)的轎車依次應(yīng)抽取______輛、______輛、______輛. 6.(2006全國Ⅱ)一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖)。為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,則在(元)月收入段應(yīng)抽出_____人。 ◆練習(xí)簡答:1-4.CBBB; 3.一天平均每人的課外閱讀時(shí)間應(yīng)為一天的總閱讀時(shí)間與學(xué)生數(shù)的比,即=0.9 h.,答案:B

23、 4.對正態(tài)分布,μ=Eξ=3,σ2=Dξ=1,故P(-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2).答案:B 5. 分層抽樣,抽樣比例為=,分別有6輛、30輛、10輛; 6.25人. 【解答題】 7. 某批零件共160個(gè),其中,一級品48個(gè),二級品64個(gè),三級品32個(gè),等外品16個(gè).從中抽取一個(gè)容量為20的樣本.請說明分別用簡單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣法抽取時(shí)總體中的每個(gè)個(gè)體被取到的概率均相同. 剖析:要說明每個(gè)個(gè)體被取到的概率相同,只需計(jì)算出用三種抽樣方法抽取個(gè)體時(shí),每個(gè)個(gè)體被取到的概率. 解:(1)簡單隨機(jī)抽樣法:可采取抽簽法,

24、將160個(gè)零件按1~160編號(hào),相應(yīng)地制作1~160號(hào)的160個(gè)簽,從中隨機(jī)抽20個(gè).顯然每個(gè)個(gè)體被抽到的概率為=. (2)系統(tǒng)抽樣法:將160個(gè)零件從1至160編上號(hào),按編號(hào)順序分成20組,每組8個(gè).然后在第1組用抽簽法隨機(jī)抽取一個(gè)號(hào)碼,如它是第k號(hào)(1≤k≤8),則在其余組中分別抽取第k+8n(n=1,2,3,…,19)號(hào),此時(shí)每個(gè)個(gè)體被抽到的概率為. (3)分層抽樣法:按比例=,分別在一級品、二級品、三級品、等外品中抽取48×=6個(gè),64×=8個(gè),32×=4個(gè),16×=2個(gè),每個(gè)個(gè)體被抽到的概率分別為,,,,即都是. 綜上可知,無論采取哪種抽樣,總體的每個(gè)個(gè)體被抽到的概率都是.

25、評述:三種抽樣方法的共同點(diǎn)就是每個(gè)個(gè)體被抽到的概率相同,這樣樣本的抽取體現(xiàn)了公平性和客觀性. 8. 已知連續(xù)型隨機(jī)變量ε的概率密度函數(shù),且f(x) ≥0,求常數(shù)k的值,并計(jì)算概率P(1.5≤ε<2.5)。   分析:凡是計(jì)算連續(xù)型隨機(jī)變量ε的密度函數(shù)f(x)中的參數(shù)、概率P(a≤ε≤b)都需要通過求面積來轉(zhuǎn)化而求得。若f(x) ≥0且在[a,b]上為線性,那么P(a≤ε≤b)的值等于以b-a為高,f(a)與f(b)為上、下底的直角梯形的面積,即 。 解: ∵ ∴;   9. 一投資者在兩個(gè)投資方案中選擇一個(gè),這兩個(gè)投資方案的利

26、潤x(萬元)分別服從正態(tài)分布N(8,32)和N(6,22),投資者要求利潤超過5萬元的概率盡量地大,那么他應(yīng)選擇哪一個(gè)方案? 解:對第一個(gè)方案,有x~N(8,32),于是P(x>5)=1-P(x≤5)=1-F(5)=1-Φ()=1-Φ(-1)=1-[1-Φ(1)]=Φ(1)=0.8413. 對第二個(gè)方案,有x~N(6,22),于是P(x>5)=1-P(x≤5)=1-F(5)=1-Φ()=1-Φ(-0.5)=Φ(0.5)=0.6915. 相比之下,“利潤超過5萬元”的概率以第一個(gè)方案為好,可選第一個(gè)方案. 10.公共汽車門的高度是按照確保99%以上的成年男子頭部不跟車門頂部碰撞設(shè)計(jì)的,如

27、果某地成年男子的身高ξ~N(173,72)(cm),問車門應(yīng)設(shè)計(jì)多高? 解:設(shè)公共汽車門的設(shè)計(jì)高度為x cm,由題意,需使P(ξ≥x)<1%. ∵ξ~N(173,72),∴P(ξ≤x)=Φ()>0.99. 查表得>2.33,∴x>189.31,即公共汽車門的高度應(yīng)設(shè)計(jì)為190 cm,可確保99%以上的成年男子頭部不跟車門頂部碰撞. 【探索題】已知測量誤差ξ~N(2,100)(cm),必須進(jìn)行多少次測量,才能使至少有一次測量誤差的絕對值不超過8 cm的頻率大于0.9? 解:設(shè)η表示n次測量中絕對誤差不超過8 cm的次數(shù),則η~B(n,p). 其中P=P(|ξ|<8)=Φ()-Φ()=Φ(0.6)-1+Φ(1)=0.7258-1+0.8413=0.5671. 由題意,∵P(η≥1)>0.9,n應(yīng)滿足P(η≥1)=1-P(η=0)=1-(1-p)n>0.9, ∴n>==2.75. 因此,至少要進(jìn)行3次測量,才能使至少有一次誤差的絕對值不超過8 cm的概率大于0.9.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!