新版高考數(shù)學(xué)復(fù)習(xí) 第三章 第三節(jié)

上傳人:沈*** 文檔編號:61753154 上傳時(shí)間:2022-03-12 格式:DOC 頁數(shù):8 大小:1.11MB
收藏 版權(quán)申訴 舉報(bào) 下載
新版高考數(shù)學(xué)復(fù)習(xí) 第三章 第三節(jié)_第1頁
第1頁 / 共8頁
新版高考數(shù)學(xué)復(fù)習(xí) 第三章 第三節(jié)_第2頁
第2頁 / 共8頁
新版高考數(shù)學(xué)復(fù)習(xí) 第三章 第三節(jié)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版高考數(shù)學(xué)復(fù)習(xí) 第三章 第三節(jié)》由會員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)復(fù)習(xí) 第三章 第三節(jié)(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 1

2、 1 課時(shí)提升作業(yè)(十九) 一、選擇題 1.(20xx·福州模擬)已知函數(shù)f(x)=3cos(2x-π4)在[0,π2]上的最大值為M,最小值為m,則M+m等于( ) (A)0 (B)3+322 (C)3-322 (D)32 2.(20xx·岳陽模擬)函數(shù)y=-12cos2x+12的遞增區(qū)間是( ) (A)(kπ,kπ+π2)(k∈Z)

3、(B)(kπ+π2,kπ+π)(k∈Z) (C)(2kπ,2kπ+π)(k∈Z) (D)(2kπ+π,2kπ+2π)(k∈Z) 3.已知函數(shù)f(x)=sin(2x-π6),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,則a的值是( ) (A)π6 (B)π3 (C)π4 (D)π2 4.(20xx·咸陽模擬)已知函數(shù)y=Asin(ωx+φ)在同一周期內(nèi),當(dāng)x=π3時(shí)有最大值2,當(dāng)x=0時(shí)有最小值-2,那么函數(shù)的解析式為( ) (A)y=2sin32x (B)y=2sin(3x+π2) (C)y=2sin(3x-π2) (D)y=12s

4、in3x 5.(20xx·景德鎮(zhèn)模擬)下列命題正確的是( ) (A)函數(shù)y=sin(2x+π3)在區(qū)間(-π3,π6)內(nèi)單調(diào)遞增 (B)函數(shù)y=cos4x-sin4x的最小正周期為2π (C)函數(shù)y=cos(x+π3)的圖像是關(guān)于點(diǎn)(π6,0)成中心對稱的圖形 (D)函數(shù)y=tan(x+π3)的圖像是關(guān)于直線x=π6成軸對稱的圖形 6.(20xx·銅川模擬)已知函數(shù)f(x)=f(π-x),且當(dāng)x∈(-π2,π2)時(shí),f(x)=x+sinx,設(shè)a=f(1),b=f(2),c=f(3),則(  ) (A)a

5、  7.函數(shù)y=2sin(2x+π3)的圖像關(guān)于點(diǎn)P(x0,0)對稱,若x0∈[-π2,0],則x0等于 (  ) (A)-π2 (B)-π6 (C)-π4 (D)-π3 8.函數(shù)y=lg(sinx)+cosx-22的定義域?yàn)?  ) (A)(2kπ,2kπ+π2](k∈Z) (B)(2kπ,2kπ+3π4](k∈Z) (C)(2kπ,2kπ+π4](k∈Z) (D)[2kπ,2kπ+π4](k∈Z) 9.(20xx·撫州模擬)設(shè)f(x)=xsinx,x∈[-π2,π2],若f(x1)>f(x2),則(  ) (A)x1+x2>0 (B)x12>x2

6、2 (C)x1>x2 (D)x10)的最大值是5,最小值是1,則a2-b2=    . 12.(能力挑戰(zhàn)題)已知直線y=b(b<0)與曲線f(x)=sin(2x+π2)在y軸右側(cè)依次的三個(gè)交點(diǎn)的橫坐標(biāo)成等比數(shù)列,則b的值是   .  13.給出如

7、下五個(gè)結(jié)論: ①存在α∈(0,π2),使sinα+cosα=13; ②存在區(qū)間(a,b),使y=cosx為減少的而sinx<0; ③y=tanx在其定義域內(nèi)為增加的; ④y=cos2x+sin(π2-x)既有最大值和最小值,又是偶函數(shù); ⑤y=sin|2x+π6|的最小正周期為π. 其中正確結(jié)論的序號是    . 14.對于函數(shù)f(x)=sinx,sinx≤cosx,cosx,sinx>cosx,給出下列四個(gè)命題: ①該函數(shù)是以π為最小正周期的周期函數(shù); ②當(dāng)且僅當(dāng)x=π+kπ(k∈Z)時(shí),該函數(shù)取得最小值-1; ③該函數(shù)的圖像關(guān)于x=5π4+2kπ(k∈Z)對稱; ④當(dāng)

8、且僅當(dāng)2kπ0,函數(shù)f(x)=-2asin(2x+π6)+2a+b,當(dāng)x∈[0,π2]時(shí), -5≤f(x)≤1.  (1)求常數(shù)a,b的值. (2)設(shè)g(x)=f(x+π2)且lgg(x)>0,求g(x)的單調(diào)區(qū)間. 答案解析 1.【解析】選C.由x∈[0,π2]得2x-π4∈[-π4,3π4], 故M=f(π8)=3cos 0=3, m=f(π2)=3cos3π4=-322, 故M+m=3-322. 2.【

9、解析】選A.由2kπ<2x<2kπ+π,k∈Z得, kπ

10、k∈Z,k≠0)也是周期,但并非所有周期函數(shù)都有最小正周期. 【變式備選】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)滿足條件f(x+12)+f(x)=0,則ω的值為( ) (A)2π (B)π (C)π2 (D)π4 【解析】選A.由f(x+12)+f(x)=0得f(x+12)=-f(x),所以f(x+1)=f(x),故函數(shù)的周期是1,又由2πω=1得ω=2π. 4.【解析】選C.由條件知A=2,T2=π3,所以T=2π3,因此ω=2πT=3, 所以f(x)=2sin(3x+φ).把x=0,y=-2代入上式得-2=2sinφ,得sinφ=-1,所以φ=2

11、kπ-π2(k∈Z), 因此f(x)=2sin(3x+2kπ-π2)(k∈Z)=2sin(3x-π2). 5.【解析】選C.對于A,當(dāng)x∈(-π3,π6)時(shí),2x+π3∈(-π3,2π3),故函數(shù)y=sin(2x+π3)不單調(diào),故A錯(cuò)誤;對于B,y=cos4x-sin4x=(cos2x-sin2x)(cos2x+sin2x)=cos2x- sin2x=cos2x,最小正周期為π,故錯(cuò)誤;對于C,當(dāng)x=π6時(shí),cos(π6+π3)=0,所以(π6,0)是對稱中心,故C正確;對于D,正切函數(shù)的圖像不是軸對稱圖形,故錯(cuò)誤. 6.【思路點(diǎn)撥】利用函數(shù)y=f(x)的單調(diào)性比較. 【解析】選D.

12、由條件知f(x)=x+sinx在(-π2,π2)上是增加的,又b=f(2)=f(π-2),c=f(3)=f(π-3),而1,π-2,π-3∈(-π2,π2),且π-3<1<π-2,所以f(π-3)0,cosx-22≥0, 得2kπ

13、(k∈Z). 9.【思路點(diǎn)撥】根據(jù)f(x)=xsinx的奇偶性和在[0,π2]上的單調(diào)性求解. 【解析】選B.由f(-x)=-xsin(-x)=xsinx=f(x)知,函數(shù)y=f(x)為偶函數(shù).又f'(x)=sinx+xcosx,當(dāng)x∈(0,π2)時(shí),f'(x)>0,故f(x)在[0,π2]上是增加的. 因?yàn)閒(x1)>f(x2),故f(|x1|)>f(|x2|),所以|x1|>|x2|,因此x12>x22. 10.【解析】選C.對于A,由題意知函數(shù)圖像的對稱中心應(yīng)在x軸上,故A不正確.對于B,由π4-2x=kπ+π2(k∈Z),得x=-kπ2-π8(k∈Z),故B不正確.對于C,將函

14、數(shù)向左平移π8后得到f(x)=sin[π4-2(x+π8)]=sin(-2x)=-sin2x,為奇函數(shù),故C正確.從而D不正確. 11.【解析】∵-1≤sin(4x-π3)≤1,b>0, ∴-b≤-bsin(4x-π3)≤b,  ∴a-b≤a-bsin(4x-π3)≤a+b, 由題意知a-b=1,a+b=5,解得a=3,b=2. ∴a2-b2=5. 答案:5 12.【思路點(diǎn)撥】化簡函數(shù)式之后數(shù)形結(jié)合可解. 【解析】設(shè)三個(gè)交點(diǎn)的橫坐標(biāo)依次為x1,x2,x3, 由圖及題意有: f(x)=sin(2x+π2) =cos2x. 且x1+x2=π,x2+x3=2π,x22=x

15、1x3, 解得x2=2π3,所以b=f(2π3)=-12. 答案:-12 13.【解析】①中α∈(0,π2)時(shí),如圖,由三角函數(shù)線知OM+MP>1,得sinα+cosα>1,故①錯(cuò). ②由y=cosx的減區(qū)間為(2kπ,2kπ+π)(k∈Z),故sinx>0,因而②錯(cuò). ③正切函數(shù)的單調(diào)區(qū)間是(kπ-π2,kπ+π2),k∈Z. 故y=tanx在定義域內(nèi)不單調(diào),故③錯(cuò). ④y=cos2x+sin(π2-x)=cos2x+cosx =2cos2x+cosx-1=2(cosx+14)2-98. ymax=2,ymin=-98. 故函數(shù)既有最大值和最小值,又是偶函數(shù),故④正確.

16、 ⑤結(jié)合圖像可知y=sin|2x+π6|不是周期函數(shù),故⑤錯(cuò). 答案:④ 14.【解析】畫出函數(shù)f(x)的圖像. 由圖像可得函數(shù)的最小正周期為2π,故①錯(cuò)誤;當(dāng)x=π+2kπ(k∈Z)或x=3π2+ 2kπ(k∈Z)時(shí),函數(shù)取得最小值-1,故②不正確;結(jié)合圖像可得③④正確. 答案:③④ 15.【解析】(1)∵x∈[0,π2], ∴2x+π6∈[π6,7π6]. ∴sin(2x+π6)∈[-12,1], ∴-2asin(2x+π6)∈[-2a,a].  ∴f(x)∈[b,3a+b]. 又∵-5≤f(x)≤1,∴b=-5,3a+b=1, 因此a=2,b=-5. (2)

17、由(1)得a=2,b=-5, ∴f(x)=-4sin(2x+π6)-1, g(x)=f(x+π2)=-4sin(2x+7π6)-1 =4sin(2x+π6)-1, 又由lgg(x)>0得g(x)>1, ∴4sin(2x+π6)-1>1,∴sin(2x+π6)>12, ∴2kπ+π6<2x+π6<2kπ+5π6,k∈Z, 其中當(dāng)2kπ+π6<2x+π6≤2kπ+π2,k∈Z時(shí),g(x)是增加的,即kπ

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!