《新編高考數(shù)學(xué)復(fù)習(xí):第八章 :第一節(jié)直線的傾斜角與斜率、直線的方程演練知能檢測(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)復(fù)習(xí):第八章 :第一節(jié)直線的傾斜角與斜率、直線的方程演練知能檢測(cè)(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料
第一節(jié) 直線的傾斜角與斜率、直線的方程
[全盤鞏固]
1.(2014·秦皇島模擬)直線x+y+1=0的傾斜角是( )
A. B. C. D.
解析:選D 由直線的方程得直線的斜率為k=-,設(shè)傾斜角為α,則tan α=-,所以α=.
2.(2014·杭州模擬)設(shè)a∈R,則“a=4”是“直線l1:ax+2y-3=0與直線l2:2x+y-a=0平行”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
解析:選C 當(dāng)a=0時(shí),易知兩直線不平行;若a≠0,兩直線平行等
2、價(jià)于=≠?a=4,故a=4是兩直線平行的充要條件.
3.如圖所示,直線l1、l2、l3的斜率分別為k1、k2、k3,則( )
A.k10,k3>0,k1<0.又因?yàn)閘2、l3的傾斜角α2,α3都是銳角,且α2>α3,所以k2>k3.因此,k2>k3>k1.
4.直線2x-my+1-3m=0,當(dāng)m變動(dòng)時(shí),所有直線都通過(guò)定點(diǎn)( )
A. B.
C. D.
解析:選D 因?yàn)橹本€2x-m
3、y+1-3m=0可化為2x+1-m(y+3)=0,令y+3=0,得2x+1=0,即y=-3,x=-,因此直線2x-my+1-3m=0恒過(guò)定點(diǎn).
5.直線l1:x+3y-7=0,l2:kx-y-2=0與x軸的正半軸及y軸的正半軸所圍成的四邊形有外接圓,則k的值為( )[來(lái)源:]
A.-3 B.3 C.1 D.2
解析:選B 依題意可知l1⊥l2,又因?yàn)橹本€l1的斜率為-,l2的斜率為k,所以-=-1,解得k=3.
6.(2014·溫州模擬)在同一平面直角坐標(biāo)系中,直線l1:ax+y+b=0和直線l2:bx+y+a=0有可能是( )
4、A B C D
解析:選B 直線l1:ax+y+b=0的斜率k1=-a,在y軸上的截距為-b;直線l2:bx+y+a=0的斜率k2=-b,在y軸上的截距為-a.在選項(xiàng)A中l(wèi)2的斜率-b<0,而l1在y軸上截距-b>0,所以A不正確.同理可排除C、D.[來(lái)源:]
7.已知直線l的傾斜角α滿足3sin α=cos α,且它在y軸上的截距為2,則直線l的方程是____________.
解析:因?yàn)橹本€l的傾斜角α滿足3sin α=cos α,所以k=tan α==.所以直線l的方程為y=x+2,即x-3y+6=0.
答案:x-3y+6=0
8.已知A(3,0)
5、,B(0,4),直線AB上一動(dòng)點(diǎn)P(x,y),則xy的最大值是________.
解析:依題意得AB的方程為+=1.當(dāng)x>0,y>0時(shí),1=+≥2 = ,即xy≤3(當(dāng)且僅當(dāng)x=,y=2時(shí)取等號(hào)),故xy的最大值為3.
答案:3
9.若三點(diǎn)A(2,3),B(3,2),C共線,則實(shí)數(shù)m=________.
解析:kAB==-1,kAC=,
∵A,B,C三點(diǎn)共線,∴kAB=kAC,
∴=-1,解得m=.
答案:
10.已知A(1,-2),B(5,6),直線l經(jīng)過(guò)AB的中點(diǎn)M,且在兩坐標(biāo)軸上的截距相等,求直線l的方程.
解:法一:設(shè)直線l在x軸,y軸上的截距均為a.
由題意得M(
6、3,2).
若a=0,即l過(guò)點(diǎn)(0,0)和(3,2),
∴直線l的方程為y=x,即2x-3y=0.
若a≠0,設(shè)直線l的方程為+=1,
∵直線l過(guò)點(diǎn)(3,2),
∴+=1,解得a=5,
此時(shí)直線l的方程為+=1,即x+y-5=0.
綜上所述,直線l的方程為2x-3y=0或x+y-5=0.
法二:易知M(3,2),由題意知所求直線l的斜率k存在且k≠0,則直線l的方程為y-2=k(x-3),
令y=0,得x=3-;令x=0,得y=2-3k.
∴3-=2-3k,解得k=-1或k=,
∴直線l的方程為y-2=-(x-3)或y-2=(x-3),[來(lái)源:]
即x+y-5=0或2x
7、-3y=0.
11.設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求l的方程;
(2)若直線l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.
解:(1)當(dāng)直線過(guò)原點(diǎn)時(shí),該直線在x軸和y軸上的截距均為0.即a=2,方程為3x+y=0.
當(dāng)直線不過(guò)原點(diǎn),即a≠2時(shí),截距存在且均不為0,
則=a-2,即a+1=1,
∴a=0,方程為x+y+2=0.
綜上所述,直線l的方程為3x+y=0或x+y+2=0.
(2)將直線l的方程化為y=-(a+1)x+a-2,
若直線不過(guò)第二象限,
則∴a≤-1.
即實(shí)數(shù)a的取值范圍是(-∞,-1].
1
8、2.如圖所示,射線OA,OB分別與x軸正半軸成45°和30°角,過(guò)點(diǎn)P(1,0)作直線AB分別交OA,OB于A,B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線y=x上時(shí),求直線AB的方程.
解:由題意可得kOA=tan 45°=1,kOB=tan(180°-30°)=-,
所以直線lOA:y=x,lOB:y=-x.
設(shè)A(m,m),B(-n,n),
所以AB的中點(diǎn)C.
由點(diǎn)C在直線y=x上,且A,P,B三點(diǎn)共線得解得m=,所以A(,).
又P(1,0),所以kAB=kAP==,
所以lAB:y=(x-1),
即直線AB的方程為(3+)x-2y-3-=0.
[沖擊名校]
1.(201
9、4·太原模擬)已知數(shù)列{an}的通項(xiàng)公式為an=(n∈N*),其前n項(xiàng)和Sn=,則直線+=1與坐標(biāo)軸所圍成三角形的面積為( )
A.36 B.45 C.50 D.55
解析:選B 由an=,可知an=-,
∴Sn=+++…+=1-,
又知Sn=,∴1-=,即n=9.
∴直線方程為+=1,且與坐標(biāo)軸的交點(diǎn)為(10,0)和(0,9),
∴直線與坐標(biāo)軸所圍成的三角形的面積為×10×9=45.
2.如圖,平面直角坐標(biāo)系內(nèi)的正六邊形ABCDEF的中心在原點(diǎn),邊長(zhǎng)為a,AB平行于x軸,直線l:y=kx+t(k為常數(shù))與正六邊形交于M,N兩點(diǎn),記△OMN的面積為S,則關(guān)于函數(shù)S=f(t)的奇偶性的判斷正確的是( )
[來(lái)源:數(shù)理化網(wǎng)]
A.一定是奇函數(shù)
B.一定是偶函數(shù)
C.既不是奇函數(shù),也不是偶函數(shù)
D.奇偶性與k有關(guān)
解析:選B 設(shè)點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M′,點(diǎn)N關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為N′,易知點(diǎn)M′,N′在正六邊形的邊上.當(dāng)直線l在某一個(gè)確定的位置時(shí),對(duì)應(yīng)有一個(gè)t值,那么易得直線M′N′的斜率仍為k,對(duì)應(yīng)的直線M′N′在y軸上的截距為-t,顯然△OMN的面積等于△OM′N′的面積,因此函數(shù)S=f(t)一定是偶函數(shù).[來(lái)源:]