新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 坐標(biāo)系與參數(shù)方程 第2節(jié) 參數(shù)方程學(xué)案 文 北師大版

上傳人:沈*** 文檔編號(hào):70790996 上傳時(shí)間:2022-04-06 格式:DOC 頁(yè)數(shù):5 大?。?70.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 坐標(biāo)系與參數(shù)方程 第2節(jié) 參數(shù)方程學(xué)案 文 北師大版_第1頁(yè)
第1頁(yè) / 共5頁(yè)
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 坐標(biāo)系與參數(shù)方程 第2節(jié) 參數(shù)方程學(xué)案 文 北師大版_第2頁(yè)
第2頁(yè) / 共5頁(yè)
新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 坐標(biāo)系與參數(shù)方程 第2節(jié) 參數(shù)方程學(xué)案 文 北師大版_第3頁(yè)
第3頁(yè) / 共5頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 坐標(biāo)系與參數(shù)方程 第2節(jié) 參數(shù)方程學(xué)案 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 坐標(biāo)系與參數(shù)方程 第2節(jié) 參數(shù)方程學(xué)案 文 北師大版(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 第二節(jié) 參數(shù)方程 [考綱傳真] 1.了解參數(shù)方程,了解參數(shù)的意義.2.能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和橢圓曲線的參數(shù)方程. (對(duì)應(yīng)學(xué)生用書第161頁(yè)) [基礎(chǔ)知識(shí)填充] 1.曲線的參數(shù)方程 一般地,在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)x,y都是某個(gè)變數(shù)t的函數(shù)并且對(duì)于t的每一個(gè)允許值,由這個(gè)方程組所確定的點(diǎn)M(x,y)都在這條曲線上,那么這個(gè)方程組就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t叫做參變數(shù),簡(jiǎn)稱參數(shù). 2.參數(shù)方程和普通方程的互化 (1)曲線的參數(shù)方程和普通方程是曲線方程的不同形式.一般地,可以通過(guò)消去參數(shù)從參數(shù)方程得到普通方程.

2、 (2)如果知道變數(shù)x,y中的一個(gè)與參數(shù)t的關(guān)系,例如x=f(t),把它代入普通方程,求出另一個(gè)變數(shù)與參數(shù)的關(guān)系y=g(t),那么就是曲線的參數(shù)方程. 3.常見曲線的參數(shù)方程和普通方程 點(diǎn)的軌跡 普通方程 參數(shù)方程 直線 y-y0=tan α(x-x0) (t為參數(shù)) 圓 x2+y2=r2 (θ為參數(shù)) 橢圓 +=1(a>b>0) (φ為參數(shù)) 溫馨提示:在直線的參數(shù)方程中,參數(shù)t的系數(shù)的平方和為1時(shí),t才有幾何意義且?guī)缀我饬x為:|t|是直線上任一點(diǎn)M(x,y)到M0(x0,y0)的距離. [基本能力自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“

3、√”,錯(cuò)誤的打“×”) (1)參數(shù)方程中的x,y都是參數(shù)t的函數(shù).(  ) (2)過(guò)M0(x0,y0),傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)).參數(shù)t的幾何意義表示:直線l上以定點(diǎn)M0為起點(diǎn),任一點(diǎn)M(x,y)為終點(diǎn)的有向線段的數(shù)量.(  ) (3)方程表示以點(diǎn)(0,1)為圓心,以2為半徑的圓.(  ) (4)已知橢圓的參數(shù)方程(t為參數(shù)),點(diǎn)M在橢圓上,對(duì)應(yīng)參數(shù)t=,點(diǎn)O為原點(diǎn),則直線OM的斜率為.(  ) [答案] (1)√ (2)√ (3)√ (4)× 2.(教材改編)曲線(θ為參數(shù))的對(duì)稱中心(  ) A.在直線y=2x上 B.在直線y=-2x上 C.

4、在直線y=x-1上 D.在直線y=x+1上 B [由得 所以(x+1)2+(y-2)2=1. 曲線是以(-1,2)為圓心,1為半徑的圓, 所以對(duì)稱中心為(-1,2),在直線y=-2x上.] 3.(教材改編)在平面直角坐標(biāo)系中,曲線C:(t為參數(shù))的普通方程為________. x-y-1=0 [由x=2+t,且y=1+t, 消去t,得x-y=1,即x-y-1=0.] 4.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ(cos θ+sin θ)=-2,曲線C2的參數(shù)方程為(t為參數(shù)),則C1與C2交點(diǎn)的直角坐標(biāo)為__

5、______. (2,-4) [由ρ(cos θ+sin θ)=-2,得x+y=-2.① 由消去t得y2=8x.② 聯(lián)立①②得即交點(diǎn)坐標(biāo)為(2,-4).] 5.(20xx·江蘇高考)在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為(t為參數(shù)),橢圓C的參數(shù)方程為(θ為參數(shù)).設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求線段AB的長(zhǎng). 【導(dǎo)學(xué)號(hào):00090372】 [解] 橢圓C的普通方程為x2+=1. 2分 將直線l的參數(shù)方程代入x2+=1,得2+=1,即7t2+16t=0, 8分 解得t1=0,t2=-,所以AB=|t1-t2|=. 10分 (對(duì)應(yīng)學(xué)生用書第162頁(yè)

6、) 參數(shù)方程與普通方程的互化  已知直線l的參數(shù)方程為(t為參數(shù)),圓C的參數(shù)方程為(θ為參數(shù)). (1)求直線l和圓C的普通方程; (2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍. [解] (1)直線l的普通方程為2x-y-2a=0, 2分 圓C的普通方程為x2+y2=16. 4分 (2)因?yàn)橹本€l與圓C有公共點(diǎn), 故圓C的圓心到直線l的距離d=≤4, 8分 解得-2≤a≤2. 10分 [規(guī)律方法] 1.將參數(shù)方程化為普通方程,消參數(shù)常用代入法、加減消元法、三角恒等變換消去參數(shù). 2.把參數(shù)方程化為普通方程時(shí),要注意哪一個(gè)量是參數(shù),并且要注意

7、參數(shù)的取值對(duì)普通方程中x及y的取值范圍的影響,要保持同解變形. [變式訓(xùn)練1] 在平面直角坐標(biāo)系xOy中,若直線l:(t為參數(shù))過(guò)橢圓C:(φ為參數(shù))的右頂點(diǎn),求常數(shù)a的值. [解] 直線l的普通方程為x-y-a=0, 橢圓C的普通方程為+=1, 4分 所以橢圓C的右頂點(diǎn)坐標(biāo)為(3,0), 若直線l過(guò)橢圓的右頂點(diǎn)(3,0), 則3-0-a=0,所以a=3. 10分 參數(shù)方程的應(yīng)用  (20xx·合肥模擬)已知曲線C:+=1,直線l:(t為參數(shù)). (1)寫出曲線C的參數(shù)方程,直線l的普通方程; (2)過(guò)曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于

8、點(diǎn)A,求|PA|的最大值與最小值. [解] (1)曲線C的參數(shù)方程為(θ為參數(shù)). 直線l的普通方程為2x+y-6=0. 4分 (2)曲線C上任意一點(diǎn)P(2cos θ,3sin θ)到l的距離為d=|4cos θ+3sin θ-6|, 則|PA|==|5sin(θ+α)-6|,其中α為銳角,且tan α=. 8分 當(dāng)sin(θ+α)=-1時(shí),|PA|取得最大值,最大值為. 當(dāng)sin(θ+α)=1時(shí),|PA|取得最小值,最小值為. 10分 [規(guī)律方法] 1.解決直線與圓的參數(shù)方程的應(yīng)用問(wèn)題時(shí),一般是先化為普通方程,再根據(jù)直線與圓的位置關(guān)系來(lái)解決問(wèn)題. 2.對(duì)于形

9、如(t為參數(shù)),當(dāng)a2+b2≠1時(shí),應(yīng)先化為標(biāo)準(zhǔn)形式后才能利用t的幾何意義解題. [變式訓(xùn)練2] (20xx·石家莊質(zhì)檢)在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過(guò)點(diǎn)P(1,2),傾斜角α=. (1)寫出圓C的普通方程和直線l的參數(shù)方程; (2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值. 【導(dǎo)學(xué)號(hào):00090373】 [解] (1)由消去θ, 得圓C的普通方程為x2+y2=16. 2分 又直線l過(guò)點(diǎn)P(1,2)且傾斜角α=, 所以l的參數(shù)方程為 即(t為參數(shù)). 4分 (2)把直線l的參數(shù)方程 代入x2+y2=1

10、6, 得2+2=16,t2+(+2)t-11=0, 所以t1t2=-11, 8分 由參數(shù)方程的幾何意義,|PA|·|PB|=|t1t2|=11. 10分 參數(shù)方程與極坐標(biāo)方程的綜合應(yīng)用  (20xx·全國(guó)卷Ⅲ)在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C. (1)寫出C的普通方程; (2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cos θ+sin θ)-=0,M為l3與C的交點(diǎn),求M的極徑. [解] (1)消去參數(shù)t得l1的普通方程l1:y=k

11、(x-2); 1分 消去參數(shù)m得l2的普通方程l2:y=(x+2). 2分 設(shè)P(x,y),由題設(shè)得 消去k得x2-y2=4(y≠0). 所以C的普通方程為x2-y2=4(y≠0). 4分 (2)C的極坐標(biāo)方程為ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π). 5分 聯(lián)立得 cos θ-sin θ=2(cos θ+sin θ). 6分 故tan θ=-,從而cos2θ=,sin2θ=. 8分 代入ρ2(cos2θ-sin2θ)=4得ρ2=5, 所以交點(diǎn)M的極徑為. 10分 [規(guī)律方法] 1.參數(shù)方程和極坐標(biāo)方程的綜合題,求解的一般方法

12、是分別化為普通方程和直角坐標(biāo)方程后求解.當(dāng)然,還要結(jié)合題目本身特點(diǎn),確定選擇何種方程. 2.?dāng)?shù)形結(jié)合的應(yīng)用,即充分利用參數(shù)方程中參數(shù)的幾何意義,或者利用ρ和θ的幾何意義,直接求解,可化繁為簡(jiǎn). [變式訓(xùn)練3] (20xx·全國(guó)卷Ⅲ)在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin=2. (1)寫出C1的普通方程和C2的直角坐標(biāo)方程; (2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值及此時(shí)P的直角坐標(biāo). [解] (1)C1的普通方程為+y2=1, 2分 由于曲線C2的方程為ρsin=2, 所以ρsin θ+ρcos θ=4, 因此曲線C2的直角坐標(biāo)方程為x+y-4=0. 4分 (2)由題意,可設(shè)點(diǎn)P的直角坐標(biāo)為(cos α,sin α). 因?yàn)镃2是直線,所以|PQ|的最小值即為P到C2的距離d(α)的最小值,8分 又d(α)==, 當(dāng)且僅當(dāng)α=2kπ+(k∈Z)時(shí),d(α)取得最小值,最小值為,此時(shí)P的直角坐標(biāo)為. 10分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!