計算機組成原理課程設(shè)計(桂林電子科技大學(xué))
第24頁
計算機組成原理課程設(shè)計說明書
題 目: 設(shè)計一臺嵌入式CISC模型計算機
院 (系): 計算機科學(xué)與工程學(xué)院
專 業(yè): 網(wǎng)絡(luò)工程
學(xué)生姓名: 唐波
學(xué) 號: 1100380219
指導(dǎo)教師: 陳智勇
一、課設(shè)題目:
設(shè)計一臺嵌入式CISC模型計算機(采用定長CPU周期、聯(lián)合控制方式),并運行能完成一定功能的機器語言程序進行驗證,實現(xiàn)方法可從以下4類中任選一個:
●連續(xù)輸入5個有符號整數(shù)(8位二進制補碼表示,用十六進制數(shù)輸入),求最小的負數(shù)的絕對值并輸出顯示。
說明:①5個有符號數(shù)從外部輸入;
②一定要使用符號標志位(比如說SF),并且要使用為負的時候轉(zhuǎn)移(比如JS)或不為負的時候轉(zhuǎn)移(比如JNS)指令。
二.CISC模型機系統(tǒng)總體設(shè)計
三.操作控制器的邏輯框圖
…
…
指令寄存器IR
操作碼
微地址寄存器
地址譯碼
控制存儲器
地址轉(zhuǎn)移
邏輯
狀態(tài)條件
微命令寄存器
P字段
操作控制字段
微命令信號
說明:
在T4內(nèi)形成微指令的微地址,并訪問控制存儲器,在T2的上邊沿到來時,將讀出的微指令打入微指令寄存器,即圖中的微命令寄存器和微地址寄存器。
四.模型機的指令系統(tǒng)和所有指令的指令格式
由此可見,本模型機中的指令系統(tǒng)中共有8條基本指令,下表9列出了每條指令的格式、匯編符號和指令功能。
指令助記符
指令格式
功能
15--12
11 10
9 8
7-----------0
IN1 Rd
0101
Rd
(Rd)+1→Rd,鎖存標志位
MOV Rd,im
0001
Rd
im
立即數(shù)→Rd
CMP Rs,Rd
0011
Rs
Rd
Rs,Rd比較,
INC Rd
0010
Rd
輸入設(shè)備→Rd
JNS addr
0100
addr
若大于,則addr→PC
JMP addr
0110
addr
addr→PC
OUT1 Rs
1001
Rs
(Rs)→輸出設(shè)備
MOV1 Rs,Rd
1000
Rs
Rd
(Rs)→Rd
NOT Rd
0111
Rd
Data取反
指令格式:
(1)I/O指令(單字節(jié))
I說明:對Rs和Rd的規(guī)定:
Rs或Rd
選定的寄存器
0 0
R0
0 1
R1
1 0
R2
1 1
R3
五.所有機器指令的微程序流程圖
00
PC→ABUS(I)
RD ROM
IBUS→IR
PC+1
00
P(1)
MOV1
OUT1
IN1
MOV
NOT
JMP
JNS
CMP
INC
03
02
09
08
01
07
O6
05
04
Rs→X
-X→Rs
鎖存CF,ZF
Rs→X
Rd→Y
鎖存CF,ZF
Rd→Y
Y+1→Rd
鎖存CF,ZF
IR(I)→Rd
Rs→LED
Rs→X
X→Rd
IR(A)
→PC
SW→Rd
20
00
00
P(2)
00
00
00
00
00
00
00
CF=1
ZF=1
CF=0
ZF=0
10
ROM→BUS
BUS→PC
00
00
設(shè)計操作控制器單元(即微程序控制器)
(1)設(shè)計微指令格式和微指令代碼表
CISC模型機系統(tǒng)使用的微指令采用全水平型微指令,字長為25位,其中微命令字段為17位,P字段為2位,后繼微地址為6位,其格式如下:
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOAD LDPC LDAR LDIR LDRi RD_B RS_B S2 S1 S0 ALU_B SW_B LED_B RD_D CS_D RAM_B CS_I ADDR_B P1 P2 后繼微地址
由微指令格式和微程序流程圖編寫的微指令代碼表如下所示,在微指令的代碼表中微命令字段從左邊到右代表的微命令信號依次為:LOAD LDPC LDAR LDIR LDRi RD_B RS_B S2 S1 S0 ALU_B SW_B LED_B RD_D CS_D RAM_B CS_I ADDR_B
微地址
微命令字段
P1
P2
后繼微地址
00
1
1
0
1
0
0
1
0
0
0
1
1
1
1
1
1
0
1
1
0
000010
01
1
0
0
0
1
0
1
0
0
0
1
1
1
1
1
1
1
0
0
0
000000
02
1
0
0
0
1
1
1
0
1
0
0
1
1
1
1
1
1
1
0
0
000001
03
1
0
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
0
0
000000
04
1
0
0
0
0
0
1
0
0
0
1
1
0
1
1
1
1
1
0
1
000011
05
1
0
0
0
1
0
1
0
0
0
1
0
1
1
1
1
1
1
0
0
000100
06
0
1
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
0
0
0
100000
07
1
0
0
0
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
0
000000
08
1
0
0
0
1
0
1
1
0
1
0
1
1
1
1
1
1
1
0
0
010010
09
1
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
1
0
0
010100
10
0
1
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
0
0
0
000000
(2)設(shè)計地址轉(zhuǎn)移邏輯電路
地址轉(zhuǎn)移邏輯電路是根據(jù)微程序流程圖3-2中的棱形框部分及多個分支微地址,利用微地址寄存器的異步置“1”端,實現(xiàn)微地址的多路轉(zhuǎn)移。
由于微地址寄存器中的觸發(fā)器異步置“1”端低電平有效,與A4~A0對應(yīng)的異步置“1”控制信號SE5~SE1的邏輯表達式為:(A5的異步置“1”端SE6實際未使用)
SE5= FSP(2)T4
SE4=I7P(1)T4
SE3=I6P(1)T4
SE2=I5P(1)T4
SE1=I4P(1)T4
六.嵌入式CISC模型計算機的頂層電路圖
CROM:
AA;
七.匯編代碼:
MOV R0,00H 功能 :將0賦給R0
MOV R1,FFH 將FF賦給R1
MOV R2,05H 將05賦給R2
L0:INC R0 計數(shù)加1
CMP R0,R2 R0與R2比較,是否輸入五個數(shù)
JNS L3 是跳轉(zhuǎn)L2輸出
IN1 R3 輸入一個數(shù)到R3
CMP R3,R1 R3和R1比較,鎖存CF,ZF
JNS L2 跳轉(zhuǎn)L2輸出
JMP L1 跳轉(zhuǎn)L1
L1:MOV1 R1,R3 (R3)→(R1)
JMP L0 跳轉(zhuǎn)L0
L2: NOT R1 R1取反
INC R1 R1加1
OUT1 R1 輸出R1
八.機器語言源程序
地址(十六進制)
匯編語言源程序
機器語言源程序
代碼
00
MOV R0,00H
0001 0000 0000 0000
1000
01
MOV R1,FFH
0001 0001 1111 1111
11FF
02
MOV R2,05H
0001 0010 0000 0101
1025
03
L0:INC R0
0010 0000 0000 0000
2000
04
CMP R0,R2
0011 1000 0000 0000
3800
05
JNS L3
0100 0000 0000 1100
400C
06
IN1 R3
0101 0011 0000 0000
5300
07
CMP R3,R1
0011 1101 0000 0000
3D00
08
JNS L2
0100 0000 0000 1010
400A
09
JMP L1
0110 0000 0000 0011
6003
0A
L1:MOV1 R1,R3
1000 1101 0000 0000
8D00
0B
JMP L0
0110 0000 0000 0011
6003
0C
L2: NOT R1
0111 0001 0000 0000
7100
0D
INC R1
0010 0001 0000 0000
2100
0E
OUT1 R1
1001 0100 0000 0000
9400
九.機器語言源程序的功能仿真波形圖及結(jié)果分析
1.MOV R0,00H 2.MOV R1,FFH 3.MOV R2,05H 4.CMP R2,R0 5.IN1 R3(F4存到R3)
6.MOV1 R3,R1(F4存入R1)
7.IN1 R3(02存到R3) 8.02是大于F4的正數(shù),不跳到L1存R1,直接跳回L0。
9.IN1 R3(F1存到R3)。10.F1是小于于F4的負數(shù),跳到L1,MOV1 R3,R1(F1存入R1)
11.FNOT R1, INC R1(F1取反加1存入R1)。 12。OUT1 R1(輸出R1,最終結(jié)果是0F)
十.故障現(xiàn)象和故障分析
故障一:
在進行仿真的時候,當輸入一個正數(shù)存進R3之后,執(zhí)行CMP R3,R1之后,沒有執(zhí)行JNS L0,而是錯將正數(shù)也存入R1。查看之后發(fā)現(xiàn)是ALU里“CMP”運算代碼有問題。
故障二:
計數(shù)(R0)一直加,到5時不會跳轉(zhuǎn)輸出,檢查機器指令發(fā)現(xiàn)JNS L2的地址寫成了06
故障三:
,輸出結(jié)果時,取反都變成FB,檢查很久之后發(fā)現(xiàn)原本應(yīng)該對AC里的數(shù)取反的,結(jié)果弄成了DR的.
故障N:
匯編程序出錯、連線錯誤、微指令錯誤、修改器件沒有重新編譯等。
十一.心得體會
剛開始去上老師的課時,聽得一頭霧水,因為發(fā)現(xiàn)好多地方自己同不懂。然后我就去看課本,同時問老師一些問題,當看到其他同學(xué)也問老師問題時,自己也跑過去湊熱鬧,因為這樣可以了解更多的知識。直到后來才發(fā)現(xiàn),原來除了設(shè)計自己的指令外,我們需要寫MCOMMAND,寫CONTROM來解析我們寫的指令,這或許可以算得上一個極簡單的CPU模型了吧。就是有了微程序控制器,計算機才認識我們自己設(shè)計的指令,才知道當讀取到什么指令時該執(zhí)行什么操作。聽得多了,看得多了,就漸漸的明白了一些課設(shè)的相關(guān)知識,然后畫指令流程圖,設(shè)計指令,寫程序完成任務(wù),這些幾乎都是水到渠成的工作了,很多都可以依葫蘆畫瓢來完成。
本次課設(shè),由于匯編學(xué)的很差,期匯編代碼是和班級同學(xué)的相同,但是自己重新設(shè)計了指令周期流程圖,經(jīng)過調(diào)試得出的結(jié)果
其實只要把最基本的原理搞明白了,后續(xù)工作開展是非??斓摹5跊]明白原理前,千萬不要畏懼困難,慢慢的一點一點學(xué)習(xí),特別是仿真軟件的學(xué)習(xí)和使用,需要花費相當?shù)臅r間。只要認真了,就有可能實現(xiàn)。
十二.軟件清單
AA里的MMM:
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY MMM IS
PORT(
SE:IN STD_LOGIC;
CLK:IN STD_LOGIC;
D:IN STD_LOGIC;
CLR:IN STD_LOGIC;
UA:OUT STD_LOGIC
);
END MMM;
ARCHITECTURE A OF MMM IS
BEGIN
PROCESS(CLR,SE,CLK)
BEGIN
IF(CLR=0) THEN
UA<=0;
ELSIF(SE=0)THEN
UA<=1;
ELSIF(CLKEVENT AND CLK=1) THEN
UA<=D;
END IF;
END PROCESS;
END A;
CROM的:
ADDR
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY ADDR IS
PORT(
I15,I14,I13,I12:IN STD_LOGIC;
ZF,CF,T4,P1,P2:IN STD_LOGIC;
SE5,SE4,SE3,SE2,SE1,SE0:OUT STD_LOGIC
);
END ADDR;
ARCHITECTURE A OF ADDR IS
BEGIN
SE5<=1; --預(yù)留給JB或JAE指令使用
SE4<=NOT((NOT ZF AND CF)AND P2 AND T4);
SE3<=NOT(I15 AND P1 AND T4);
SE2<=NOT(I14 AND P1 AND T4);
SE1<=NOT(I13 AND P1 AND T4);
SE0<=NOT(I12 AND P1 AND T4);
END A;
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY F1 IS
PORT(
UA5,UA4,UA3,UA2,UA1,UA0: IN STD_LOGIC;
D:OUT STD_LOGIC_VECTOR(5 DOWNTO 0)
);
END F1;
ARCHITECTURE A OF F1 IS
BEGIN
D(5)<=UA5;
D(4)<=UA4;
D(3)<=UA3;
D(2)<=UA2;
D(1)<=UA1;
D(0)<=UA0;
END A;
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY F2 IS
PORT(
D:IN STD_LOGIC_VECTOR(5 DOWNTO 0);
UA5,UA4,UA3,UA2,UA1,UA0: OUT STD_LOGIC
);
END F2;
ARCHITECTURE A OF F2 IS
BEGIN
UA5<=D(5);
UA4<=D(4);
UA3<=D(3);
UA2<=D(2);
UA1<=D(1);
UA0<=D(0);
END A;
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY CONTROM IS
PORT(ADDR: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
UA:OUT STD_LOGIC_VECTOR(5 DOWNTO 0);
O:OUT STD_LOGIC_VECTOR(19 DOWNTO 0)
);
END CONTROM;
ARCHITECTURE A OF CONTROM IS
SIGNAL DATAOUT: STD_LOGIC_VECTOR(25 DOWNTO 0);
BEGIN
PROCESS
BEGIN
CASE ADDR IS
WHEN "000000" => DATAOUT<="11010010001111110110000000";
WHEN "000001" => DATAOUT<="10001010001111111000000000";
WHEN "000010" => DATAOUT<="10001110100111111100000000";
WHEN "000011" => DATAOUT<="10000110011111111100000000";
WHEN "000100" => DATAOUT<="10000010001111111001000000";
WHEN "000101" => DATAOUT<="10001010001011111100000000";
WHEN "000110" => DATAOUT<="01000010001111111000000000";
WHEN "000111" => DATAOUT<="10001111000111111100000000";
WHEN "001000" => DATAOUT<="10001011010111111100000000";
WHEN "001001" => DATAOUT<="10000000001101111100000000";
WHEN "010000" => DATAOUT<="01000010001111111000000000";
WHEN OTHERS => DATAOUT<="10000010001111111100000000";
END CASE;
UA(5 DOWNTO 0)<=DATAOUT(5 DOWNTO 0);
O(19 DOWNTO 0)<=DATAOUT(25 DOWNTO 6);
END PROCESS;
END A;
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY F3 IS
PORT(
D:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
UA3,UA2,UA1,UA0: OUT STD_LOGIC
);
END F3;
ARCHITECTURE A OF F3 IS
BEGIN
UA3<=D(3);
UA2<=D(2);
UA1<=D(1);
UA0<=D(0);
END A;
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY MCOMMAND IS
PORT(
T2,T3,T4:IN STD_LOGIC;
D:IN STD_LOGIC_VECTOR(19 DOWNTO 0);
LOAD,LDPC,LDAR,LDIR,LDRI,LDPSW,RS_B,S2,S1,S0:OUT STD_LOGIC;
ALU_B,SW_B,LED_B,RD_D,CS_D,RAM_B,CS_I,ADDR_B,P1,P2:OUT STD_LOGIC
);
END MCOMMAND;
ARCHITECTURE A OF MCOMMAND IS
SIGNAL DATAOUT:STD_LOGIC_VECTOR(19 DOWNTO 0);
BEGIN
PROCESS(T2)
BEGIN
IF(T2EVENT AND T2=1) THEN
DATAOUT(19 DOWNTO 0)<=D(19 DOWNTO 0);
END IF;
LOAD<=DATAOUT(19);
LDPC<=DATAOUT(18) AND T4;
LDAR<=DATAOUT(17) AND T3;
LDIR<=DATAOUT(16) AND T3;
LDRI<=DATAOUT(15) AND T4;
LDPSW<=DATAOUT(14) AND T4;
RS_B<=DATAOUT(13);
S2<=DATAOUT(12);
S1<=DATAOUT(11);
S0<=DATAOUT(10);
ALU_B<=DATAOUT(9);
SW_B<=DATAOUT(8);
LED_B<=DATAOUT(7);
RD_D<=NOT(NOT DATAOUT(6) AND (T2 OR T3));
CS_D<=NOT(NOT DATAOUT(5) AND T3);
RAM_B<=DATAOUT(4);
CS_I<=DATAOUT(3);
ADDR_B<=DATAOUT(2);
P1<=DATAOUT(1);
P2<=DATAOUT(0);
END PROCESS;
END A;
Top頂層圖的:
MUX3功能表
輸入 輸出
SW-B CS ID[7..0] N1[7..0] N2[7..0] EW[7..0]
0 X X X X IN[7..0]
1 0 X X X N2[7..0]
1 1 X X X N1[7..0]
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY MUX3 IS
PORT(
ID:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
SW_B,CS:IN STD_LOGIC;
N1,N2:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
EW:OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);
END MUX3;
ARCHITECTURE A OF MUX3 IS
BEGIN
PROCESS(SW_B,CS)
BEGIN
IF(SW_B=0) THEN
EW<=ID;
ELSIF(CS=0)THEN
EW<=N2;
ELSE
EW<=N1;
END IF;
END PROCESS;
END A;
ROM功能
CS=1,不選擇
CS=0,讀
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY ROM IS
PORT(
DOUT:OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
ADDR:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
CS_I:IN STD_LOGIC
);
END ROM;
ARCHITECTURE A OF ROM IS
BEGIN
DOUT<="0001000000000000" WHEN ADDR="00000000" AND CS_I=0 ELSE
"0001000111111111" WHEN ADDR="00000001" AND CS_I=0 ELSE
"0001001000000101" WHEN ADDR="00000010" AND CS_I=0 ELSE
"0010000000000000" WHEN ADDR="00000011" AND CS_I=0 ELSE
"0011100000000000" WHEN ADDR="00000100" AND CS_I=0 ELSE
"0100000000001100" WHEN ADDR="00000101" AND CS_I=0 ELSE
"0101001100000000" WHEN ADDR="00000110" AND CS_I=0 ELSE
"0011110100000000" WHEN ADDR="00000111" AND CS_I=0 ELSE
"0100000000001010" WHEN ADDR="00001000" AND CS_I=0 ELSE
"0110000000000011" WHEN ADDR="00001001" AND CS_I=0 ELSE
"1000110100000000" WHEN ADDR="00001010" AND CS_I=0 ELSE
"0110000000000011" WHEN ADDR="00001011" AND CS_I=0 ELSE
"0111000100000000" WHEN ADDR="00001100" AND CS_I=0 ELSE
"0010000100000000" WHEN ADDR="00001101" AND CS_I=0 ELSE
"1001010000000000" WHEN ADDR="00001110" AND CS_I=0 ELSE
"0000000000000000";
END A;
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY COUNTER IS
PORT(
CLK,CLR: IN STD_LOGIC;
T2,T3,T4: OUT STD_LOGIC
);
END COUNTER;
ARCHITECTURE A OF COUNTER IS
SIGNAL X:STD_LOGIC_VECTOR(1 DOWNTO 0):="00";
BEGIN
PROCESS(CLK,CLR)
BEGIN
IF(CLR=0) THEN
T2<=0;
T3<=0;
T4<=0;
X<="00";
ELSIF(CLKEVENT AND CLK=1) THEN
X<=X+1;
T2<=(NOT X(1))AND X(0);
T3<=X(1) AND(NOT X(0));
T4<=X(1) AND X(0);
END IF;
END PROCESS;
END A;
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY LS273 IS
PORT(
D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
CLK: IN STD_LOGIC;
Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);
END LS273;
ARCHITECTURE A OF LS273 IS
BEGIN
PROCESS(CLK)
BEGIN
IF(CLKEVENT AND CLK=1) THEN
Q<=D;
END IF;
END PROCESS;
END A;
ALU功能表
S2 S1 S0 功能
0 0 0 ADD,鎖存CF,ZF
0 1 1 CMP(比較指令)
0 1 0 INC(加1指令)
1 1 0 NOT(取反指令)
1 0 1 MOV1 ((Rs) →(Rd))
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.all;
ENTITY ALU IS
PORT(
X: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
Y: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
S2,S1,S0: IN STD_LOGIC;
ALUOUT: OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ;
CF,ZF: OUT STD_LOGIC
);
END ALU;
ARCHITECTURE A OF ALU IS
SIGNAL AA,BB,TEMP:STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL TEMP1:STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
PROCESS
BEGIN
IF(S2=0 AND S1=0 AND S0=0) THEN --ADD
AA<=0&X;
BB<=0&Y;
TEMP<=AA+BB;
ALUOUT<=TEMP(7 DOWNTO 0);
CF<=TEMP(8);
IF (TEMP="100000000" OR TEMP="000000000") THEN
ZF<=1;
ELSE
ZF<=0;
END IF;
ELSIF(S2=0 AND S1=0 AND S0=1) THEN --CMP(SUB)
AA<=0&X;
BB<=0&Y;
TEMP<=AA-BB;
ALUOUT<=TEMP(7 DOWNTO 0);
TEMP1<=TEMP(7 DOWNTO 0);
CF<=TEMP1(7);
IF (TEMP1="00000000") THEN
ZF<=1;
ELSE
ZF<=0;
END IF;
ELSIF(S2=0 AND S1=1 AND S0=0) THEN --INC
AA<=0&Y;
TEMP<=AA+1;
ALUOUT<=TEMP(7 DOWNTO 0);
CF<=TEMP(8);
IF (TEMP="100000000") THEN
ZF<=1;
ELSE
ZF<=0;
END IF;
ELSIF(S2=0 AND S1=1 AND S0=1) THEN --DEC
AA<=0&Y;
TEMP<=AA-1;
ALUOUT<=TEMP(7 DOWNTO 0);
CF<=TEMP(8);
IF (TEMP="000000000") THEN
ZF<=1;
ELSE
ZF<=0;
END IF;
ELSIF(S2=1 AND S1=0 AND S0=0) THEN --NOT
TEMP1<=NOT Y;
ALUOUT<=TEMP1;
ELSIF(S2=1 AND S1=0 AND S0=1) THEN --MOV1
ALUOUT<=X;
ELSIF(S2=1 AND S1=1 AND S0=0) THEN --Rd->BUS
ALUOUT<=Y;
ELSE
ALUOUT<="00000000" ;
CF<=0;
ZF<=0;
END IF;
END PROCESS;
END A;
PC功能
CLR LOAD LDPC 功能
0 X X 將PC清0
1 0 BUS→PC
1 1 0 不裝入,也不計數(shù)
1 1 PC+1
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY PC IS
PORT(
LOAD,LDPC,CLR: IN STD_LOGIC;
D: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);
END PC;
ARCHITECTURE A OF PC IS
SIGNAL QOUT: STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
PROCESS(LDPC,CLR,LOAD)
BEGIN
IF(CLR=0) THEN
QOUT<="00000000";
ELSIF(LDPCEVENT AND LDPC=1) THEN
IF(LOAD=0) THEN
QOUT<=D; --BUS->PC
ELSE
QOUT<=QOUT+1; --PC+1
END IF;
END IF;
END PROCESS;
Q<=QOUT;
END A;
FEN2功能表
輸入 輸出
WR LED-B X[7..0] W1[7..0] W2[7..0]
0 0 X X[7..0]
其他取值 X X[7..0]
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY FEN2 IS
PORT(
LED_B:IN STD_LOGIC;
DBUS:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
FENOUT,OUTBUS:OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);
END FEN2;
ARCHITECTURE A OF FEN2 IS
BEGIN
PROCESS
BEGIN
IF(LED_B=0) THEN
OUTBUS<=DBUS;
ELSE
FENOUT<=DBUS;
END IF;
END PROCESS;
END A;
第24頁