(全國通用版)2019高考數(shù)學二輪復習 專題五 解析幾何 規(guī)范答題示例7 直線與圓錐曲線的位置關(guān)系學案 理
-
資源ID:105556223
資源大小:47KB
全文頁數(shù):3頁
- 資源格式: DOC
下載積分:16積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
(全國通用版)2019高考數(shù)學二輪復習 專題五 解析幾何 規(guī)范答題示例7 直線與圓錐曲線的位置關(guān)系學案 理
規(guī)范答題示例7 直線與圓錐曲線的位置關(guān)系
典例7 (12分)在平面直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率為,且點在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)橢圓E:+=1,P為橢圓C上任意一點,過點P的直線y=kx+m交橢圓E于A,B兩點,射線PO交橢圓E于點Q.
①求的值;②求△ABQ面積的最大值.
審題路線圖 (1)―→
(2)①―→
②
―→―→
規(guī) 范 解 答·分 步 得 分
構(gòu) 建 答 題 模 板
解 (1)由題意知+=1.又=,
解得a2=4,b2=1.所以橢圓C的方程為+y2=1.2分
(2)由(1)知橢圓E的方程為+=1.
①設(shè)P(x0,y0),=λ,由題意知Q(-λx0,-λy0).
因為+y=1,又+=1,即=1,
所以λ=2,即=2.5分
②設(shè)A(x1,y1),B(x2,y2).
將y=kx+m代入橢圓E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,
由Δ>0,可得m2<4+16k2,(*)
則x1+x2=-,x1x2=.所以|x1-x2|=.
因為直線y=kx+m與y軸交點的坐標為(0,m),
所以△OAB的面積S=|m||x1-x2|=
==2.8分
設(shè)=t,將y=kx+m代入橢圓C的方程,
可得(1+4k2)x2+8kmx+4m2-4=0,
由Δ≥0,可得m2≤1+4k2.(**)
由(*)(**)可知0<t≤1,因此S=2=2,
故0<S≤2,當且僅當t=1,即m2=1+4k2時取得最大值2.
由①知,△ABQ的面積為3S,所以△ABQ面積的最大值為6.
12分
第一步
求圓錐曲線方程:根據(jù)基本量法確定圓錐曲線的方程.
第二步
聯(lián)立消元:將直線方程和圓錐曲線方程聯(lián)立得到方程:Ax2+Bx+C=0,然后研究判別式,利用根與系數(shù)的關(guān)系得等式.
第三步
找關(guān)系:從題設(shè)中尋求變量的等量或不等關(guān)系.
第四步
建函數(shù):對范圍最值類問題,要建立關(guān)于目標變量的函數(shù)關(guān)系.
第五步
得范圍:通過求解函數(shù)值域或解不等式得目標變量的范圍或最值,要注意變量條件的制約,檢查最值取得的條件.
評分細則 (1)第(1)問中,求a2-c2=b2關(guān)系式直接得b=1,扣1分;
(2)第(2)問中,求時,給出P,Q的坐標關(guān)系給1分;無“Δ>0”和“Δ≥0”者,每處扣1分;聯(lián)立方程消元得出關(guān)于x的一元二次方程給1分;根與系數(shù)的關(guān)系寫出后再給1分;求最值時,不指明最值取得的條件扣1分.
跟蹤演練7 (2018·全國Ⅰ)設(shè)橢圓C:+y2=1的右焦點為F,過F的直線l與C交于A,B兩點,點M的坐標為(2,0).
(1)當l與x軸垂直時,求直線AM的方程;
(2)設(shè)O為坐標原點,證明:∠OMA=∠OMB.
(1)解 由已知得F(1,0),l的方程為x=1.
由已知可得,點A的坐標為或.
又M(2,0),
所以AM的方程為y=-x+或y=x-.
即x+y-2=0或x-y-2=0.
(2)證明 當l與x軸重合時,∠OMA=∠OMB=0°.
當l與x軸垂直時,OM為AB的垂直平分線,所以∠OMA=∠OMB.
當l與x軸不重合也不垂直時,設(shè)l的方程為
y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),
則x1<,x2<,直線MA,MB的斜率之和
kMA+kMB=+.
由y1=kx1-k,y2=kx2-k,得
kMA+kMB=.
將y=k(x-1)代入+y2=1,得
(2k2+1)x2-4k2x+2k2-2=0,由題意知Δ>0恒成立,
所以x1+x2=,x1x2=.
則2kx1x2-3k(x1+x2)+4k==0,
從而kMA+kMB=0,故MA,MB的傾斜角互補.
所以∠OMA=∠OMB.綜上,∠OMA=∠OMB.
3