(全國(guó)通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 規(guī)范答題示例6 直線與圓錐曲線的位置關(guān)系學(xué)案 文
-
資源ID:105594410
資源大?。?span id="mokm00q" class="font-tahoma">46KB
全文頁(yè)數(shù):3頁(yè)
- 資源格式: DOC
下載積分:16積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
(全國(guó)通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 規(guī)范答題示例6 直線與圓錐曲線的位置關(guān)系學(xué)案 文
規(guī)范答題示例6 直線與圓錐曲線的位置關(guān)系
典例6 (12分)在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率為,且點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)橢圓E:+=1,P為橢圓C上任意一點(diǎn),過(guò)點(diǎn)P的直線y=kx+m交橢圓E于A,B兩點(diǎn),射線PO交橢圓E于點(diǎn)Q.
①求的值;②求△ABQ面積的最大值.
審題路線圖 (1)―→
(2)①―→
②
―→―→
規(guī) 范 解 答·分 步 得 分
構(gòu) 建 答 題 模 板
解 (1)由題意知+=1.又=,
解得a2=4,b2=1.所以橢圓C的方程為+y2=1.2分
(2)由(1)知橢圓E的方程為+=1.
①設(shè)P(x0,y0),=λ,由題意知Q(-λx0,-λy0).
因?yàn)椋珁=1,又+=1,即=1,
所以λ=2,即=2.5分
②設(shè)A(x1,y1),B(x2,y2).將y=kx+m代入橢圓E的方程,
可得(1+4k2)x2+8kmx+4m2-16=0,
由Δ>0,可得m2<4+16k2,(*)
則x1+x2=-,x1x2=.
所以|x1-x2|=.
因?yàn)橹本€y=kx+m與y軸交點(diǎn)的坐標(biāo)為(0,m),
所以△OAB的面積S=|m||x1-x2|=
==2.8分
設(shè)=t,將y=kx+m代入橢圓C的方程,
可得(1+4k2)x2+8kmx+4m2-4=0,
由Δ≥0,可得m2≤1+4k2.(**)
由(*)(**)可知0<t≤1,因此S=2=2,
故0<S≤2,當(dāng)且僅當(dāng)t=1,即m2=1+4k2時(shí)取得最大值2.
由①知,△ABQ的面積為3S,
所以△ABQ面積的最大值為6.12分
第一步
求圓錐曲線方程:根據(jù)基本量法確定圓錐曲線的方程.
第二步
聯(lián)立消元:將直線方程和圓錐曲線方程聯(lián)立得到方程:Ax2+Bx+C=0,然后研究判別式,利用根與系數(shù)的關(guān)系得等式.
第三步
找關(guān)系:從題設(shè)中尋求變量的等量或不等關(guān)系.
第四步
建函數(shù):對(duì)范圍最值類問(wèn)題,要建立關(guān)于目標(biāo)變量的函數(shù)關(guān)系.
第五步
得范圍:通過(guò)求解函數(shù)值域或解不等式得目標(biāo)變量的范圍或最值,要注意變量條件的制約,檢查最值取得的條件.
評(píng)分細(xì)則 (1)第(1)問(wèn)中,求a2-c2=b2關(guān)系式直接得b=1,扣1分;
(2)第(2)問(wèn)中,求時(shí),給出P,Q的坐標(biāo)關(guān)系給1分;無(wú)“Δ>0”和“Δ≥0”者,每處扣1分;聯(lián)立方程消元得出關(guān)于x的一元二次方程給1分;根與系數(shù)的關(guān)系寫出后再給1分;求最值時(shí),不指明最值取得的條件扣1分.
跟蹤演練6 (2018·全國(guó)Ⅰ)設(shè)拋物線C:y2=2x,點(diǎn)A(2,0),B(-2,0),過(guò)點(diǎn)A的直線l與C交于M,N兩點(diǎn).
(1)當(dāng)l與x軸垂直時(shí),求直線BM的方程;
(2)證明:∠ABM=∠ABN.
(1)解 當(dāng)l與x軸垂直時(shí),l的方程為x=2,可得點(diǎn)M的坐標(biāo)為(2,2)或(2,-2).
所以直線BM的方程為y=x+1或y=-x-1.
即x-2y+2=0或x+2y+2=0.
(2)證明 當(dāng)l與x軸垂直時(shí),AB為MN的垂直平分線,
所以∠ABM=∠ABN.
當(dāng)l與x軸不垂直時(shí),設(shè)l的方程為y=k(x-2)(k≠0),
M(x1,y1),N(x2,y2),則x1>0,x2>0.
由得ky2-2y-4k=0,
顯然方程有兩個(gè)不等實(shí)根.
所以y1+y2=,y1y2=-4.
直線BM,BN的斜率之和kBM+kBN=+=.①
將x1=+2,x2=+2及y1+y2,y1y2的表達(dá)式代入①式分子,
可得x2y1+x1y2+2(y1+y2)===0.
所以kBM+kBN=0,可知BM,BN的傾斜角互補(bǔ),
所以∠ABM=∠ABN.綜上,∠ABM=∠ABN.
3