歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2020年高考數(shù)學一輪復習 考點題型 課下層級訓練38 直線、平面垂直的判定與性質(含解析)

  • 資源ID:116521822       資源大小:2.37MB        全文頁數(shù):7頁
  • 資源格式: DOC        下載積分:22積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要22積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

2020年高考數(shù)學一輪復習 考點題型 課下層級訓練38 直線、平面垂直的判定與性質(含解析)

課下層級訓練(三十八) 直線、平面垂直的判定與性質 [A級 基礎強化訓練] 1.(2019·山東濰坊月考)已知平面α和直線a,b,若a∥α,則“b⊥a”是“b⊥α”的(  ) A.充分不必要條件  B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 【答案】B [根據(jù)空間中直線與平面之間的位置關系,由a∥α,b⊥α,可得b⊥a,反之不成立,可能b與α相交或平行.∴“b⊥a”是“b⊥α”的必要不充分條件.] 2.(2019·山東日照檢測)如圖,PA垂直于矩形ABCD所在的平面,則圖中與平面PCD垂直的平面是(  ) A.平面ABCD B.平面PBC C.平面PAD D.平面PAB 【答案】C [由PA⊥平面ABCD得PA⊥CD,由四邊形ABCD為矩形得CD⊥AD,從而有CD⊥平面PAD,所以平面PCD⊥平面PAD.] 3.(2019·山東臨沂月考)在下列四個正方體中,能得出AB⊥CD的是(  ) A.① B.①② C.②③ D.④ 【答案】A [在①中,設平面BCD上的另一個頂點為A1,連接BA1,易得CD⊥BA1,CD⊥AA1,則CD⊥平面ABA1,故CD⊥AB,②③④均不能推出AB⊥CD.] 4.(2019·山東諸城檢測)設l是直線,α,β是兩個不同的平面,下列命題正確的是(  ) A.若l∥α,l∥β,則α∥β B.若l∥α,l⊥β,則α⊥β C.若α⊥β,l⊥α,則l∥β D.若α⊥β,l∥α,則l⊥β 【答案】B [由l是直線,α,β是兩個不同的平面,知在A中,若l∥α,l∥β,則α與β相交或平行,故A錯誤;在B中,若l∥α,l⊥β,則由面面垂直的判定定理得α⊥β,故B正確;在C中,若α⊥β,l⊥α,則l與β平行或l?β,故C錯誤;在D中,若α⊥β,l∥α,則l與β相交、平行或l?β,故D錯誤.] 5.已知長方體ABCD ­A1B1C1D1中,AA1=,AB=4,若在棱AB上存在點P,使得D1P⊥PC,則AD的取值范圍是(  ) A.(0,1] B.(0,2] C.(1,] D.[1,4) 【答案】B [連接DP,由D1P⊥PC,DD1⊥PC,且D1P,DD1是平面DD1P內(nèi)兩條相交直線,得PC⊥平面DD1P,PC⊥DP,即點P在以CD為直徑的圓上,又點P在AB上,則AB與圓有公共點,即0< AD≤CD=2.] 6.△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平面ABC,PC=4,M是AB上的一個動點,則PM的最小值為________. 【答案】2 [作CH⊥AB于H,連接PH. 因為PC⊥平面ABC,所以PH⊥AB,PH為PM的最小值,等于2.] 7.(2019·河南洛陽月考)如圖所示,在四棱錐P ­ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當點M滿足________時,平面MBD⊥平面PCD.(只要填寫一個你認為正確的條件即可) 【答案】DM⊥PC(或BM⊥PC等) [∵PA⊥底面ABCD,∴BD⊥PA,連接AC,則BD⊥AC,且PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC. ∴當DM⊥PC(或BM⊥PC)時,即有PC⊥平面MBD,而PC?平面PCD,∴平面MBD⊥平面PCD.] 8.三棱錐S ­ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結論中: ①異面直線SB與AC所成的角為90°; ②直線SB⊥平面ABC; ③平面SBC⊥平面SAC; ④點C到平面SAB的距離是a. 其中正確的是________. 【答案】①②③④ [由題意知AC⊥平面SBC,故AC⊥SB,故①正確;再根據(jù)SB⊥AC,SB⊥AB,可得SB⊥平面ABC,平面SBC⊥平面SAC,故②③正確;取AB的中點E,連接CE,可證得CE⊥平面SAB,故CE的長度即為點C到平面SAB的距離,為a,④正確.] 9.如圖,在△ABC中,∠ABC=90°,D是AC的中點,S是△ABC所在平面外一點,且SA=SB=SC. (1)求證:SD⊥平面ABC; (2)若AB=BC,求證:BD⊥平面SAC. 【答案】證明 (1)因為SA=SC,D是AC的中點, 所以SD⊥AC. 在Rt△ABC中,AD=BD,又SA=SB,SD=SD, 所以△ADS≌△BDS,所以SD⊥BD. 又AC∩BD=D,所以SD⊥平面ABC. (2)因為AB=BC,D為AC的中點,所以BD⊥AC. 由(1)知SD⊥BD,又SD∩AC=D, 所以BD⊥平面SAC. 10.(2019·山東煙臺期末)如圖,四棱錐S­ABCD的底面為平行四邊形,DA=DS,DA⊥DS,AB=BS=SA=BD=2. (1)求證:平面ASD⊥平面ABS; (2)求四棱錐S ­ABCD的體積. 【答案】(1)證明 如圖,取AS中點H,連接DH,BH, 因為△ABS是等邊三角形,AS=2, 所以BH⊥AS,且BH=. 又∵DA⊥DS,SA=2,∴DH=1. 在△DHB中,BD=2,DH=1,BH=, ∴DB2=DH2+BH2,∴BH⊥DH. ∵BH⊥AS,AS∩DH=H, ∴BH⊥平面ASD.又∵BH?平面ABS,∴平面ASD⊥平面ABS. (2)解 由(1)知,BH⊥平面ASD, ∴BH為三棱錐B ­ADS的高. 又S△ADS=×2×1=1, ∴V三棱錐B ­ADS=BH·S△ADS=××1=,∴V四棱錐S ­ABCD=2V三棱錐S­ABD=. [B級 能力提升訓練] 11.如圖,已知長方形ABCD中,AB=2,AD=,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM. (1)求證:AD⊥BM; (2)若點E是線段DB上的一動點,問點E在何位置時,三棱錐E ­ADM的體積與四棱錐D-ABCM的體積之比為1∶3? 【答案】(1)證明 ∵長方形ABCD中,AB=2,AD=,M為DC的中點, ∴AM=BM=2,∴AB2=AM2+BM2, ∴BM⊥AM. ∵平面ADM⊥平面ABCM, 平面ADM∩平面ABCM=AM,BM?平面ABCM, ∴BM⊥平面ADM. ∵AD?平面ADM,∴AD⊥BM. (2)解 當E為DB的中點時,VE­ADM=VB­ADM=VD ­ABM=×VD­ABCM=VD ­ABCM,∴E為DB的中點. 12.(2018·北京卷)如圖,在四棱錐P­ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F(xiàn)分別為AD,PB的中點. (1)求證:PE⊥BC; (2)求證:平面PAB⊥平面PCD; (3)求證:EF∥平面PCD. 【答案】證明 (1)因為PA=PD,E為AD的中點, 所以PE⊥AD. 因為底面ABCD為矩形, 所以BC∥AD,所以PE⊥BC. (2)因為底面ABCD為矩形, 所以AB⊥AD. 又因為平面PAD⊥平面ABCD, 所以AB⊥平面PAD, 所以AB⊥PD. 又因為PA⊥PD, 所以PD⊥平面PAB. 所以平面PAB⊥平面PCD. (3)如圖,取PC的中點G,連接FG,DG. 因為F,G分別為PB,PC的中點, 所以FG∥BC,F(xiàn)G=BC. 因為四邊形ABCD為矩形,且E為AD的中點, 所以DE∥BC,DE=BC. 所以DE∥FG,DE=FG. 所以四邊形DEFG為平行四邊形. 所以EF∥DG. 又因為EF?平面PCD,DG?平面PCD, 所以EF∥平面PCD. 13.如圖,在四棱錐P ­ABCD中,PC=AD=CD=AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD. (1)求證:BC⊥平面PAC; (2)若M為線段PA的中點,且過C,D,M三點的平面與線段PB交于點N,確定點N的位置,說明理由;并求三棱錐A ­CMN的高. 【答案】(1)證明 連接AC,在直角梯形ABCD中, AC==2, BC==2, 所以AC2+BC2=AB2,即AC⊥BC. 又PC⊥平面ABCD,BC?平面ABCD, 所以PC⊥BC,又AC∩PC=C,AC,PC?平面PAC, 故BC⊥平面PAC. (2)解 N為PB的中點,連接MN,CN. 因為M為PA的中點,N為PB的中點, 所以MN∥AB,且MN=AB=2. 又因為AB∥CD,所以MN∥CD, 所以M,N,C,D四點共面, 所以N為過C,D,M三點的平面與線段PB的交點. 因為BC⊥平面PAC,N為PB的中點, 所以點N到平面PAC的距離d=BC=. 又S△ACM=S△ACP=××AC×PC=, 所以V三棱錐N ­ACM=××=. 由題意可知,在Rt△PCA中, PA==2,CM=, 在Rt△PCB中,PB==2, CN=,所以S△CMN=×2×=. 設三棱錐A ­CMN的高為h, V三棱錐N ­ACM=V三棱錐A ­CMN=××h=, 解得h=,故三棱錐A ­CMN的高為. 7

注意事項

本文(2020年高考數(shù)學一輪復習 考點題型 課下層級訓練38 直線、平面垂直的判定與性質(含解析))為本站會員(Sc****h)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!