《(通用版)2020版高考數(shù)學大二輪復(fù)習 專題突破練9 利用導數(shù)證明問題及討論零點個數(shù) 理》由會員分享,可在線閱讀,更多相關(guān)《(通用版)2020版高考數(shù)學大二輪復(fù)習 專題突破練9 利用導數(shù)證明問題及討論零點個數(shù) 理(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題突破練9 利用導數(shù)證明問題及討論零點個數(shù)
1.設(shè)函數(shù)f(x)=e2x-aln x.
(1)討論f(x)的導函數(shù)f'(x)零點的個數(shù);
(2)證明:當a>0時,f(x)≥2a+aln2a.
2.(2019福建漳州質(zhì)檢二,理21)已知函數(shù)f(x)=xln x.
(1)若函數(shù)g(x)=f(x)x2-1x,求g(x)的極值;
(2)證明:f(x)+1
2、數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)有兩個相異零點x1,x2(x12-ln x1.
4.(2019四川成都二模,理21)已知函數(shù)f(x)=ln x+a1x-1,a∈R.
(1)若f(x)≥0,求實數(shù)a取值的集合;
(2)證明:ex+1x≥2-ln x+x2+(e-2)x.
5.設(shè)函數(shù)f(x)=ln x-x+1.
(1)討論f(x)的單調(diào)性;
(2)證明當x∈(1,+∞)時,11,證明當x∈(0,1)時,1+(c-1)x>cx.
6.已
3、知函數(shù)f(x)=(x-2)ex+a(x-1)2有兩個零點.
(1)求a的取值范圍;
(2)設(shè)x1,x2是f(x)的兩個零點,證明:x1+x2<2.
7.(2019天津卷,理20)設(shè)函數(shù)f(x)=excos x,g(x)為f(x)的導函數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)當x∈π4,π2時,證明f(x)+g(x)π2-x≥0;
(3)設(shè)xn為函數(shù)u(x)=f(x)-1在區(qū)間2nπ+π4,2nπ+π2內(nèi)的零點,其中n∈N,證明2nπ+π2-xn
4、論零點個數(shù)
1.解(1)f(x)的定義域為(0,+∞),f'(x)=2e2x-ax(x>0).
當a≤0時,f'(x)>0,f'(x)沒有零點,
當a>0時,因為e2x單調(diào)遞增,-ax單調(diào)遞增,
所以f'(x)在(0,+∞)單調(diào)遞增.
又f'(a)>0,當b滿足00時,f'(x)存在唯一零點.
(2)由(1),可設(shè)f'(x)在(0,+∞)的唯一零點為x0,當x∈(0,x0)時,f'(x)<0;當x∈(x0,+∞)時,f'(x)>0.
故f(x)在(0,x0)單調(diào)遞減,在(x0,+∞)單調(diào)遞增,所以當x=x0時,f(x)取得最小值,最
5、小值為f(x0).
因為2e2x0-ax0=0,
所以f(x0)=a2x0+2ax0+aln2a≥2a+aln2a.
故當a>0時,f(x)≥2a+aln2a.
2.(1)解∵g(x)=lnx-1x(x>0),
∴g'(x)=2-lnxx2.
令g'(x)>0,解得0e2,
故g(x)在(0,e2)內(nèi)遞增,在(e2,+∞)內(nèi)遞減,
故g(x)的極大值為g(e2)=1e2,沒有極小值.
(2)證明要證f(x)+10.
先證明lnx≤x-1,取h(x)=lnx-x+1,
則h'(x)=1-x
6、x,
易知h(x)在(0,1)內(nèi)遞增,在(1,+∞)內(nèi)遞減,
所以h(x)≤h(1)=0,即lnx≤x-1,當且僅當x=1時,取“=”,
故xlnx≤x(x-1),ex-x2-xlnx-1≥ex-2x2+x-1,
故只需證明當x>0時,ex-2x2+x-1>0恒成立.
令k(x)=ex-2x2+x-1(x≥0),則k'(x)=ex-4x+1.
令F(x)=k'(x),則F'(x)=ex-4,令F'(x)=0,解得x=2ln2.
∵F'(x)遞增,∴當x∈(0,2ln2]時,F'(x)≤0,F(x)遞減,即k'(x)遞減,
當x∈(2ln2,+∞)時,F'(x)>0,F(x)遞增
7、,即k'(x)遞增,
且k'(2ln2)=5-8ln2<0,k'(0)=2>0,k'(2)=e2-8+1>0,
由零點存在定理,可知?x1∈(0,2ln2),?x2∈(2ln2,2),使得k'(x1)=k'(x2)=0,
故0x2時,k'(x)>0,k(x)遞增,
當x10,
故當x>0時,k(x)>0,原不等式成
8、立.
3.(1)解f'(x)=1x-k=1-kxx(x>0),
①當k≤0時,f'(x)>0,f(x)在區(qū)間(0,+∞)內(nèi)遞增,
②當k>0時,由f'(x)>0,得0x2>0,
∵f(x1)=0,f(x2)=0,
∴l(xiāng)nx1-kx1=0,lnx2-kx2=0,
∴l(xiāng)nx1-lnx2=k(x1-x2),lnx1+lnx2=k(x1+x2),
要證明lnx2>2-lnx1,即證明lnx1+lnx2>2,故k(x1+x2)>2,
即lnx1-lnx2
9、x1-x2>2x1+x2,即lnx1x2>2(x1-x2)x1+x2,
設(shè)t=x1x2>1,上式轉(zhuǎn)化為lnt>2(t-1)t+1(t>1).
設(shè)g(t)=lnt-2(t-1)t+1,∴g'(t)=(t-1)2t(t+1)2>0,
∴g(t)在(1,+∞)上單調(diào)遞增,
∴g(t)>g(1)=0,∴l(xiāng)nt>2(t-1)t+1,∴l(xiāng)nx1+lnx2>2,即lnx2>2-lnx1.
4.(1)解f'(x)=1x-ax2=x-ax2(x>0).
當a≤0時,f'(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增.又f(1)=0,
因此當00時,可
10、得函數(shù)f(x)在(0,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增,
故當x=a時,函數(shù)f(x)取得最小值,則f(a)=lna+1-a≥0.
令g(a)=lna+1-a,g(1)=0.
由g'(a)=1a-1=1-aa,可知當a=1時,函數(shù)g(a)取得最大值,而g(1)=0,
因此只有當a=1時滿足f(a)=lna+1-a≥0.故a=1.
故實數(shù)a取值的集合是{1}.
(2)證明由(1)可知,當a=1時,f(x)≥0,即lnx≥1-1x在(0,+∞)內(nèi)恒成立.
要證明ex+1x≥2-lnx+x2+(e-2)x,即證明ex≥1+x2+(e-2)x,即ex-1-x2-(e-2)x≥0.
11、
令h(x)=ex-1-x2-(e-2)x,x>0.
h'(x)=ex-2x-(e-2),令u(x)=ex-2x-(e-2),
u'(x)=ex-2,令u'(x)=ex-2=0,解得x=ln2.
則函數(shù)u(x)在(0,ln2)內(nèi)單調(diào)遞減,在(ln2,+∞)內(nèi)單調(diào)遞增.
即函數(shù)h'(x)在(0,ln2)內(nèi)單調(diào)遞減,在(ln2,+∞)內(nèi)單調(diào)遞增.
而h'(0)=1-(e-2)=3-e>0,
h'(ln2)0,h(x)單調(diào)遞增;
當x∈(x0,1)時,h'(x)<0,h(x)單
12、調(diào)遞減.
當x∈(1,+∞)時,h'(x)>0,h(x)單調(diào)遞增.
又h(0)=1-1=0,h(1)=e-1-1-(e-2)=0,
故對?x>0,h(x)≥0恒成立,即ex-1-x2-(e-2)x≥0.
綜上可知,ex+1x≥2-lnx+x2+(e-2)x成立.
5.(1)解由題設(shè),f(x)的定義域為(0,+∞),f'(x)=1x-1,
令f'(x)=0解得x=1.
當00,f(x)單調(diào)遞增;
當x>1時,f'(x)<0,f(x)單調(diào)遞減.
(2)證明由(1)知f(x)在x=1處取得最大值,最大值為f(1)=0.
所以當x≠1時,lnx
13、故當x∈(1,+∞)時,lnx1,
設(shè)g(x)=1+(c-1)x-cx,
則g'(x)=c-1-cxlnc,
令g'(x)=0,解得x0=lnc-1lnclnc.
當x0,g(x)單調(diào)遞增;
當x>x0時,g'(x)<0,g(x)單調(diào)遞減.
由(2)知10.
所以當x∈(0,1)時,1+(c-1)x>cx.
6.(1)解f'(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2
14、a).
①設(shè)a=0,則f(x)=(x-2)ex,f(x)只有一個零點.
②設(shè)a>0,則當x∈(-∞,1)時,f'(x)<0;
當x∈(1,+∞)時,f'(x)>0,
所以f(x)在(-∞,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增.
又f(1)=-e,f(2)=a,取b滿足b<0且ba2(b-2)+a(b-1)2=ab2-32b>0,
故f(x)存在兩個零點.
③設(shè)a<0,由f'(x)=0得x=1或x=ln(-2a).
若a≥-e2,則ln(-2a)≤1,
故當x∈(1,+∞)時,f'(x)>0,
因此f(x)在(1,+∞)單調(diào)遞增.
又當x≤1時,
15、f(x)<0,所以f(x)不存在兩個零點.
若a<-e2,則ln(-2a)>1,
故當x∈(1,ln(-2a))時,f'(x)<0;
當x∈(ln(-2a),+∞)時,f'(x)>0.
因此f(x)在(1,ln(-2a))單調(diào)遞減,
在(ln(-2a),+∞)單調(diào)遞增.
又當x≤1時f(x)<0,所以f(x)不存在兩個零點.
綜上,a的取值范圍為(0,+∞).
(2)證明不妨設(shè)x1f(2-x2),
即f(2-x2)<0.
16、
由于f(2-x2)=-x2e2-x2+a(x2-1)2,
而f(x2)=(x2-2)ex2+a(x2-1)2=0,
所以f(2-x2)=-x2e2-x2-(x2-2)ex2.
設(shè)g(x)=-xe2-x-(x-2)ex,
則g'(x)=(x-1)(e2-x-ex).
所以當x>1時,g'(x)<0,
而g(1)=0,
故當x>1時,g(x)<0.
從而g(x2)=f(2-x2)<0,
故x1+x2<2.
7.(1)解由已知,有f'(x)=ex(cosx-sinx).因此,當x∈2kπ+π4,2kπ+5π4(k∈Z)時,有sinx>cosx,得f'(x)<0,則f(x)單調(diào)遞
17、減;
當x∈2kπ-3π4,2kπ+π4(k∈Z)時,有sinx0,則f(x)單調(diào)遞增.
所以,f(x)的單調(diào)遞增區(qū)間為2kπ-3π4,2kπ+π4(k∈Z),f(x)的單調(diào)遞減區(qū)間為2kπ+π4,2kπ+5π4(k∈Z).
(2)證明記h(x)=f(x)+g(x)π2-x.
依題意及(1),有
g(x)=ex(cosx-sinx),
從而g'(x)=-2exsinx.
當x∈π4,π2時,g'(x)<0,
故h'(x)=f'(x)+g'(x)π2-x+g(x)(-1)=g'(x)π2-x<0.
因此,h(x)在區(qū)間π4,π2上單調(diào)遞減,進而h(x)
18、≥hπ2=fπ2=0.
所以,當x∈π4,π2時,f(x)+g(x)π2-x≥0.
(3)證明依題意,u(xn)=f(xn)-1=0,即exncosxn=1.記yn=xn-2nπ,則yn∈π4,π2,且f(yn)=eyncosyn=exn-2nπcos(xn-2nπ)=e-2nπ(n∈N).
由f(yn)=e-2nπ≤1=f(y0)及(1),得yn≥y0.
由(2)知,當x∈π4,π2時,g'(x)<0,所以g(x)在π4,π2上為減函數(shù),
因此g(yn)≤g(y0)