歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOCX文檔下載  

(廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 題型練8 大題專項(xiàng)6 文

  • 資源ID:121499612       資源大?。?span id="zayjdp0" class="font-tahoma">2.29MB        全文頁(yè)數(shù):11頁(yè)
  • 資源格式: DOCX        下載積分:22積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要22積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

(廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 題型練8 大題專項(xiàng)6 文

題型練8 大題專項(xiàng)(六) 函數(shù)與導(dǎo)數(shù)綜合問(wèn)題 1.已知函數(shù)f(x)=ex(ex-a)-a2x. (1)討論f(x)的單調(diào)性; (2)若f(x)≥0,求a的取值范圍. 2.設(shè)函數(shù)f(x)=[ax2-(3a+1)x+3a+2]ex. (1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線斜率為0,求a; (2)若f(x)在x=1處取得極小值,求a的取值范圍. 3.(2019貴州遵義模擬,20)設(shè)函數(shù)f(x)=13x3-12x2+ax,a∈R. (1)若x=2是f(x)的極值點(diǎn),求a的值; (2)已知函數(shù)g(x)=f(x)-12ax2+23,若g(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍. 4.已知函數(shù)f(x)=-2xln x+x2-2ax+a2,其中a>0. (1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性; (2)證明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解. 5.(2019江西吉安一中等八校聯(lián)考,21)已知函數(shù)f(x)=12ax-a+1-lnxx. (1)若函數(shù)f(x)為減函數(shù),求實(shí)數(shù)a的取值范圍; (2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍. 6.(2019北京,文20)已知函數(shù)f(x)=14x3-x2+x. (1)求曲線y=f(x)的斜率為1的切線方程; (2)當(dāng)x∈[-2,4]時(shí),求證:x-6≤f(x)≤x; (3)設(shè)F(x)=|f(x)-(x+a)|(a∈R),記F(x)在區(qū)間[-2,4]上的最大值為M(a).當(dāng)M(a)最小時(shí),求a的值. 題型練8 大題專項(xiàng)(六) 函數(shù)與導(dǎo)數(shù)綜合問(wèn)題 1.解(1)函數(shù)f(x)的定義域?yàn)?-∞,+∞),f'(x)=2e2x-aex-a2=(2ex+a)(ex-a). ①若a=0,則f(x)=e2x,在區(qū)間(-∞,+∞)內(nèi)單調(diào)遞增. ②若a>0,則由f'(x)=0得x=lna. 當(dāng)x∈(-∞,lna)時(shí),f'(x)<0;當(dāng)x∈(lna,+∞)時(shí),f'(x)>0.故f(x)在區(qū)間(-∞,lna)內(nèi)單調(diào)遞減,在區(qū)間(lna,+∞)內(nèi)單調(diào)遞增. ③若a<0,則由f'(x)=0得x=ln-a2. 當(dāng)x∈-∞,ln-a2時(shí),f'(x)<0; 當(dāng)x∈ln-a2,+∞時(shí),f'(x)>0. 故f(x)在區(qū)間-∞,ln-a2內(nèi)單調(diào)遞減,在區(qū)間ln-a2,+∞內(nèi)單調(diào)遞增. (2)①若a=0,則f(x)=e2x,所以f(x)≥0. ②若a>0,則由(1)得,當(dāng)x=lna時(shí),f(x)取得最小值,最小值為f(lna)=-a2lna. 從而當(dāng)且僅當(dāng)-a2lna≥0,即a≤1時(shí),f(x)≥0. ③若a<0,則由(1)得,當(dāng)x=ln-a2時(shí),f(x)取得最小值,最小值為fln-a2=a234-ln-a2. 從而當(dāng)且僅當(dāng)a234-ln-a2≥0, 即a≥-2e34時(shí)f(x)≥0. 綜上,a的取值范圍是[-2e34,1]. 2.解(1)因?yàn)閒(x)=[ax2-(3a+1)x+3a+2]ex, 所以f'(x)=[ax2-(a+1)x+1]ex. 所以f'(2)=(2a-1)e2. 由題設(shè)知f'(2)=0,即(2a-1)e2=0,解得a=12. (2)(方法一)由(1)得f'(x)=[ax2-(a+1)x+1]ex=(ax-1)(x-1)ex. 若a>1,則當(dāng)x∈1a,1時(shí),f'(x)<0; 當(dāng)x∈(1,+∞)時(shí),f'(x)>0. 所以f(x)在x=1處取得極小值. 若a≤1,則當(dāng)x∈(0,1)時(shí),ax-1≤x-1<0,所以f'(x)>0. 所以1不是f(x)的極小值點(diǎn). 綜上可知,a的取值范圍是(1,+∞). (方法二)由(1)得f'(x)=(ax-1)(x-1)ex. 當(dāng)a=0時(shí),令f'(x)=0,得x=1. f'(x),f(x)隨x的變化情況如下表: x (-∞,1) 1 (1,+∞) f'(x) + 0 - f(x) ↗ 極大值 ↘ ∴f(x)在x=1處取得極大值,不符合題意. 當(dāng)a>0時(shí),令f'(x)=0,得x1=1a,x2=1. ①當(dāng)x1=x2,即a=1時(shí),f'(x)=(x-1)2ex≥0, ∴f(x)在R上單調(diào)遞增, ∴f(x)無(wú)極值,不符合題意. ②當(dāng)x1>x2,即0<a<1時(shí),f'(x),f(x)隨x的變化情況如下表: x (-∞,1) 1 1,1a 1a 1a,+∞ f'(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ ∴f(x)在x=1處取得極大值,不符合題意. ③當(dāng)x1<x2,即a>1時(shí),f'(x),f(x)隨x的變化情況如下表: x -∞,1a 1a 1a,1 1 (1,+∞) f'(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ ∴f(x)在x=1處取得極小值,即a>1滿足題意. 當(dāng)a<0時(shí),令f'(x)=0,得x1=1a,x2=1. f'(x),f(x)隨x的變化情況如下表: x -∞,1a 1a 1a,1 1 (1,+∞) f'(x) - 0 + 0 - f(x) ↘ 極小值 ↗ 極大值 ↘ ∴f(x)在x=1處取得極大值,不符合題意. 綜上所述,a的取值范圍為(1,+∞). 3.解(1)因?yàn)閒(x)=13x3-12x2+ax,a∈R, 所以f'(x)=x2-x+a. 因?yàn)閤=2是f(x)的極值點(diǎn),所以f'(2)=4-2+a=0,解得a=-2. (2)因?yàn)間(x)=13x3-12(1+a)x2+ax+23,所以g'(x)=x2-(1+a)x+a=(x-1)(x-a). ①當(dāng)a≥1時(shí),x∈(0,1),g'(x)>0恒成立,即g(x)單調(diào)遞增. 又g(0)=23>0, 因此函數(shù)g(x)在區(qū)間(0,1)內(nèi)沒(méi)有零點(diǎn). ②當(dāng)0<a<1時(shí),x∈(0,a),g'(x)>0,即g(x)單調(diào)遞增;x∈(a,1),g'(x)<0,即g(x)單調(diào)遞減. 又g(0)=23>0,因此要使函數(shù)g(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),必有g(shù)(1)<0, 所以13-12(1+a)+a+23<0. 解得a<-1,舍去. ③當(dāng)a≤0時(shí),x∈(0,1),g'(x)<0,即g(x)單調(diào)遞減;又g(0)=23>0,因此要使函數(shù)g(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),必有g(shù)(1)<0,解得a<-1滿足條件. 綜上可得,a的取值范圍是(-∞,-1). 4.(1)解由已知,函數(shù)f(x)的定義域?yàn)?0,+∞), g(x)=f'(x)=2(x-1-lnx-a), 所以g'(x)=2-2x=2(x-1)x. 當(dāng)x∈(0,1)時(shí),g'(x)<0,g(x)單調(diào)遞減; 當(dāng)x∈(1,+∞)時(shí),g'(x)>0,g(x)單調(diào)遞增. (2)證明由f'(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx. 令φ(x)=-2xlnx+x2-2x(x-1-lnx)+(x-1-lnx)2=(1+lnx)2-2xlnx, 則φ(1)=1>0,φ(e)=2(2-e)<0. 于是,存在x0∈(1,e),使得φ(x0)=0. 令a0=x0-1-lnx0=u(x0),其中u(x)=x-1-lnx(x≥1).由u'(x)=1-1x≥0知,函數(shù)u(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞增. 故0=u(1)<a0=u(x0)<u(e)=e-2<1. 即a0∈(0,1). 當(dāng)a=a0時(shí),有f'(x0)=0,f(x0)=φ(x0)=0. 再由(1)知,f'(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞增, 當(dāng)x∈(1,x0)時(shí),f'(x)<0,從而f(x)>f(x0)=0; 當(dāng)x∈(x0,+∞)時(shí),f'(x)>0,從而f(x)>f(x0)=0; 又當(dāng)x∈(0,1]時(shí),f(x)=(x-a0)2-2xlnx>0. 故x∈(0,+∞)時(shí),f(x)≥0. 綜上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解. 5.解(1)∵f(x)=12ax-a+1-lnxx, ∴f'(x)=12a-1-lnxx2. ∵函數(shù)f(x)為減函數(shù), ∴f'(x)≤0,即12a≤1-lnxx2對(duì)x∈(0,+∞)恒成立. 設(shè)m(x)=1-lnxx2,則m'(x)=2lnx-3x3. ∴m(x)在區(qū)間(0,e32)內(nèi)單調(diào)遞減,在區(qū)間(e32,+∞)內(nèi)單調(diào)遞增. ∴m(x)min=m(e32)=-12e3. ∴12a≤-12e3,即a≤-e-3, 故實(shí)數(shù)a的取值范圍是(-∞,-e-3]. (2)易知函數(shù)f(x)的定義域?yàn)?0,+∞),f(x)=12ax2-(a-1)x-lnxx. 設(shè)h(x)=12ax2-(a-1)x-lnx,則原命題等價(jià)于函數(shù)h(x)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍. 可知h'(x)=ax-(a-1)-1x=ax2-(a-1)x-1x=(ax+1)(x-1)x, ∴當(dāng)a≥0時(shí),函數(shù)h(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,在區(qū)間(1,+∞)內(nèi)單調(diào)遞增, ∴若函數(shù)h(x)有兩個(gè)不同的零點(diǎn),則必有h(1)=-12a+1<0,即a>2. 此時(shí),在x∈(1,+∞)內(nèi),有h(2)=2a-2(a-1)-ln2=2-ln2>0; 在x∈(0,1)內(nèi),∵h(yuǎn)(x)=12a(x2-2x)+x-lnx, ∵-1<x2-2x<0,∴h(x)>-12a+x-lnx, ∴h(e-12a)>-12a+e-12a-ln(e-12a)=e-12a>0, ∴h(x)在區(qū)間(0,1),(1,+∞)內(nèi)各有一個(gè)零點(diǎn),故a>2符合題意; 當(dāng)a=-1時(shí),可知函數(shù)h(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減, ∴函數(shù)h(x)至多有一個(gè)零點(diǎn),不符合題意; 當(dāng)-1<a<0時(shí),可知函數(shù)h(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,在區(qū)間1,-1a內(nèi)單調(diào)遞增,在區(qū)間-1a,+∞內(nèi)單調(diào)遞減, ∴函數(shù)h(x)的極小值為h(1)=-12a+1>0, ∴函數(shù)h(x)至多有一個(gè)零點(diǎn),不符合題意; 當(dāng)a<-1時(shí),可知函數(shù)h(x)在區(qū)間0,-1a內(nèi)單調(diào)遞減,在區(qū)間-1a,1內(nèi)單調(diào)遞增,在區(qū)間(1,+∞)內(nèi)單調(diào)遞減, ∴函數(shù)h(x)的極小值為h-1a=12a+1a(a-1)-ln-1a=1-12a+ln(-a)>0, ∴函數(shù)h(x)至多有一個(gè)零點(diǎn),不符合題意. 綜上所述,實(shí)數(shù)a的取值范圍是(2,+∞). 6.(1)解由f(x)=14x3-x2+x得f'(x)=34x2-2x+1. 令f'(x)=1,即34x2-2x+1=1,得x=0或x=83. 又f(0)=0,f83=827, 所以曲線y=f(x)的斜率為1的切線方程是y=x與y-827=x-83,即y=x與y=x-6427. (2)證明令g(x)=f(x)-x,x∈[-2,4]. 由g(x)=14x3-x2得g'(x)=34x2-2x, 令g'(x)=0得x=0或x=83. g'(x),g(x)的情況如下: x -2 (-2,0) 0 0,83 83 83,4 4 g'(x) + - + g(x) -6 ↗ 0 ↘ -6427 ↗ 0 所以g(x)的最小值為-6,最大值為0. 故-6≤g(x)≤0,即x-6≤f(x)≤x. (3)解由(2)知,當(dāng)a<-3時(shí),M(a)≥F(0)=|g(0)-a|=-a>3; 當(dāng)a>-3時(shí),M(a)≥F(-2)=|g(-2)-a|=6+a>3; 當(dāng)a=-3時(shí),M(a)=3. 綜上,當(dāng)M(a)最小時(shí),a=-3. 11

注意事項(xiàng)

本文((廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 題型練8 大題專項(xiàng)6 文)為本站會(huì)員(Sc****h)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!