全國(guó)各地2015年中考數(shù)學(xué)試卷解析分類(lèi)匯編(第2期)專(zhuān)題23 直角三角形與勾股定理
-
資源ID:152974746
資源大?。?span id="mhbfuxt" class="font-tahoma">701KB
全文頁(yè)數(shù):30頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
全國(guó)各地2015年中考數(shù)學(xué)試卷解析分類(lèi)匯編(第2期)專(zhuān)題23 直角三角形與勾股定理
直角三角形與勾股定理
一.選擇題
1.(2015?濱州,第10題3分)如圖,在直角∠O的內(nèi)部有一滑動(dòng)桿AB,當(dāng)端點(diǎn)A沿直線AO向下滑動(dòng)時(shí),端點(diǎn)B會(huì)隨之自動(dòng)地沿直線OB向左滑動(dòng),如果滑動(dòng)桿從圖中AB處滑動(dòng)到A′B′處,那么滑動(dòng)桿的中點(diǎn)C所經(jīng)過(guò)的路徑是( ?。?
A. 直線的一部分 B. 圓的一部分
C. 雙曲線的一部分 D. 拋物線的一部分
考點(diǎn): 軌跡;直角三角形斜邊上的中線.
分析: 根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到OC=AB=A′B′=OC′,從而得出滑動(dòng)桿的中點(diǎn)C所經(jīng)過(guò)的路徑是一段圓?。?
解答: 解:連接OC、OC′,如圖,
∵∠AOB=90°,C為AB中點(diǎn),
∴OC=AB=A′B′=OC′,
∴當(dāng)端點(diǎn)A沿直線AO向下滑動(dòng)時(shí),AB的中點(diǎn)C到O的距離始終為定長(zhǎng),
∴滑動(dòng)桿的中點(diǎn)C所經(jīng)過(guò)的路徑是一段圓?。?
故選B.
點(diǎn)評(píng): 本題考查了軌跡,圓的定義與性質(zhì),掌握直角三角形斜邊上的中線等于斜邊的一半是解題的關(guān)鍵.
2.(2015?山東泰安,第20題3分)如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿直線BE折疊后得到△GBE,延長(zhǎng)BG交CD于點(diǎn)F.若AB=6,BC=4,則FD的長(zhǎng)為( )
A.2 B. 4 C. D. 2
考點(diǎn): 翻折變換(折疊問(wèn)題)..
分析: 根據(jù)點(diǎn)E是AD的中點(diǎn)以及翻折的性質(zhì)可以求出AE=DE=EG,然后利用“HL”證明△EDF和△EGF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可證得DF=GF;設(shè)FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式進(jìn)行計(jì)算即可得解.
解答: 解:∵E是AD的中點(diǎn),
∴AE=DE,
∵△ABE沿BE折疊后得到△GBE,
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中,
,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
設(shè)DF=x,則BF=6+x,CF=6﹣x,
在Rt△BCF中,(4)2+(6﹣x)2=(6+x)2,
解得x=4.
故選:B.
點(diǎn)評(píng): 本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理的應(yīng)用,翻折的性質(zhì),熟記性質(zhì),找出三角形全等的條件EF=EC是解題的關(guān)鍵.
3. (2015年浙江衢州10,3分)如圖,已知等腰,以為直徑的圓交于點(diǎn),過(guò)點(diǎn)的的切線交于點(diǎn),若,則的半徑是【 】
A. B. C. D.
【答案】D.
【考點(diǎn)】等腰三角形的性質(zhì);切線的性質(zhì);平行的判定和性質(zhì);矩形的判定和性質(zhì);勾股定理;方程思想的應(yīng)用.
【分析】如答圖,連接,過(guò)點(diǎn)作于點(diǎn),
∵,∴.
∵,∴.∴.∴.
∵是的切線,∴.∴.
∴,且四邊形是矩形.
∵,∴由勾股定理,得.
設(shè)的半徑是,
則.
∴由勾股定理,得,即,解得.
∴的半徑是.
故選D.
4.(2015?青海西寧第17題2分)如圖,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分線DE分別交AB,AC于D,E兩點(diǎn),則CD的長(zhǎng)為 .
考點(diǎn): 線段垂直平分線的性質(zhì);勾股定理..
分析: 先根據(jù)線段垂直平分線的性質(zhì)得出CD=AD,故AB=BD+AD=BD+CD,設(shè)CD=x,則BD=4﹣x,在Rt△BCD中根據(jù)勾股定理求出x的值即可.
解答: 解:∵DE是AC的垂直平分線,
∴CD=AD,
∴AB=BD+AD=BD+CD,
設(shè)CD=x,則BD=4﹣x,
在Rt△BCD中,
CD2=BC2+BD2,即x2=32+(4﹣x)2,
解得x=.
故答案為:.
點(diǎn)評(píng): 本題考查的是線段垂直平分線的性質(zhì),熟知垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等是解答此題的關(guān)鍵.
5.(3分)(2015?桂林)(第8題)下列各組線段能構(gòu)成直角三角形的一組是( ?。?
A. 30,40,50 B. 7,12,13 C. 5,9,12 D. 3,4,6
考點(diǎn): 勾股定理的逆定理.
分析: 根據(jù)勾股定理的逆定理:如果三角形有兩邊的平方和等于第三邊的平方,那么這個(gè)是直角三角形判定則可.如果有這種關(guān)系,這個(gè)就是直角三角形.
解答: 解:A、∵302+402=502,∴該三角形符合勾股定理的逆定理,故是直角三角形,故正確;
B、∵72+122≠132,∴該三角形不符合勾股定理的逆定理,故不是直角三角形,故錯(cuò)誤;
C、∵52+92≠122,∴該三角形不符合勾股定理的逆定理,故不是直角三角形,故錯(cuò)誤;
D、∵32+42≠62,∴該三角形不符合勾股定理的逆定理,故不是直角三角形,故錯(cuò)誤;
故選A.
點(diǎn)評(píng): 本題考查了勾股定理的逆定理,在應(yīng)用勾股定理的逆定理時(shí),應(yīng)先認(rèn)真分析所給邊的大小關(guān)系,確定最大邊后,再驗(yàn)證兩條較小邊的平方和與最大邊的平方之間的關(guān)系,進(jìn)而作出判斷.
6.(3分)(2015?畢節(jié)市)(第5題)下列各組數(shù)據(jù)中的三個(gè)數(shù)作為三角形的邊長(zhǎng),其中能構(gòu)成直角三角形的是( ?。?
A. ,, B. 1,, C. 6,7,8 D. 2,3,4
考點(diǎn): 勾股定理的逆定理.
分析: 知道三條邊的大小,用較小的兩條邊的平方和與最大的邊的平方比較,如果相等,則三角形為直角三角形;否則不是.
解答: 解:A、()2+()2≠()2,不能構(gòu)成直角三角形,故錯(cuò)誤;
B、12+()2=()2,能構(gòu)成直角三角形,故正確;
C、62+72≠82,不能構(gòu)成直角三角形,故錯(cuò)誤;
D、22+32≠42,不能構(gòu)成直角三角形,故錯(cuò)誤.
故選:B.
點(diǎn)評(píng): 本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長(zhǎng),只要利用勾股定理的逆定理加以判斷即可.
7.(4分)(2015?銅仁市)(第8題)如圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對(duì)角線BD翻折,點(diǎn)C落在點(diǎn)C1處,BC1交AD于點(diǎn)E,則線段DE的長(zhǎng)為( ?。?
A.
3
B.
C.
5
D.
考點(diǎn):
翻折變換(折疊問(wèn)題)..
分析:
首先根據(jù)題意得到BE=DE,然后根據(jù)勾股定理得到關(guān)于線段AB、AE、BE的方程,解方程即可解決問(wèn)題.
解答:
解:設(shè)ED=x,則AE=8﹣x;
∵四邊形ABCD為矩形,
∴AD∥BC,
∴∠EDB=∠DBC;
由題意得:∠EBD=∠DBC,
∴∠EDB=∠EBD,
∴EB=ED=x;
由勾股定理得:
BE2=AB2+AE2,
即x2=42+(8﹣x)2,
解得:x=5,
∴ED=5.
故選:C.
點(diǎn)評(píng):
本題主要考查了幾何變換中的翻折變換及其應(yīng)用問(wèn)題;解題的關(guān)鍵是根據(jù)翻折變換的性質(zhì),結(jié)合全等三角形的判定及其性質(zhì)、勾股定理等幾何知識(shí),靈活進(jìn)行判斷、分析、推理或解答.
8.(2015?甘肅天水,第8題,4分)如圖,在四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,點(diǎn)P在四邊形ABCD的邊上.若點(diǎn)P到BD的距離為,則點(diǎn)P的個(gè)數(shù)為( ?。?
A. 2 B. 3 C. 4 D. 5
考點(diǎn): 等腰直角三角形;點(diǎn)到直線的距離.
分析: 首先作出AB、AD邊上的點(diǎn)P(點(diǎn)A)到BD的垂線段AE,即點(diǎn)P到BD的最長(zhǎng)距離,作出BC、CD的點(diǎn)P(點(diǎn)C)到BD的垂線段CF,即點(diǎn)P到BD的最長(zhǎng)距離,由已知計(jì)算出AE、CF的長(zhǎng)與比較得出答案.
解答: 解:過(guò)點(diǎn)A作AE⊥BD于E,過(guò)點(diǎn)C作CF⊥BD于F,
∵∠BAD=∠ADC=90°,AB=AD=2,CD=,
∴∠ABD=∠ADB=45°,
∴∠CDF=90°﹣∠ADB=45°,
∵sin∠ABD=,
∴AE=AB?sin∠ABD=2?sin45°
=2?=2>,
所以在AB和AD邊上有符合P到BD的距離為的點(diǎn)2個(gè),
故選A.
點(diǎn)評(píng): 本題考查了解直角三角形和點(diǎn)到直線的距離,解題的關(guān)鍵是先求出各邊上點(diǎn)到BD的最大距離比較得出答案.
9.(2015?青島,第4題3分)如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE⊥AB,垂足為E,DE=1,則BC=( ?。?
A.
B.
2
C.
3
D.
+2
考點(diǎn):
含30度角的直角三角形.
分析:
根據(jù)角平分線的性質(zhì)即可求得CD的長(zhǎng),然后在直角△BDE中,根據(jù)30°的銳角所對(duì)的直角邊等于斜邊的一半,即可求得BD長(zhǎng),則BC即可求得.
解答:
解:∵AD是△ABC的角平分線,DE⊥AB,∠C=90°,
∴CD=DE=1,
又∵直角△BDE中,∠B=30°,
∴BD=2DE=2,
∴BC=CD+BD=1+2=3.
故選C.
點(diǎn)評(píng):
本題考查了角的平分線的性質(zhì)以及直角三角形的性質(zhì),30°的銳角所對(duì)的直角邊等于斜邊的一半,理解性質(zhì)定理是關(guān)鍵.
二.填空題
1. (2015?江蘇宿遷,第14題3分)如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E,F(xiàn)分別為AB,AC,BC的中點(diǎn).若CD=5,則EF的長(zhǎng)為 5?。?
考點(diǎn): 三角形中位線定理;直角三角形斜邊上的中線..
分析: 已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半.
解答: 解:∵△ABC是直角三角形,CD是斜邊的中線,
∴CD=AB,
又∵EF是△ABC的中位線,
∴AB=2CD=2×5=10cm,
∴EF=×10=5cm.
故答案為:5.
點(diǎn)評(píng): 此題主要考查了三角形中位線定理以及直角三角形斜邊上的中線等知識(shí),用到的知識(shí)點(diǎn)為:(1)直角三角形斜邊的中線等于斜邊的一半;(2)三角形的中位線等于對(duì)應(yīng)邊的一半.
2.(2015?濟(jì)南,第18題3分)如圖,PA是⊙O的切線,A是切點(diǎn),PA=4,OP=5,則⊙O的周長(zhǎng)為 6π?。ńY(jié)果保留π).
考點(diǎn): 切線的性質(zhì);勾股定理.
分析: 連接OA,根據(jù)切線的性質(zhì)求出∠OAP=90°,根據(jù)勾股定理求出OA即可.
解答: 解:
連接OA,
∵PA是⊙O的切線,A是切點(diǎn),
∴∠OAP=90°,
在Rt△OAP中,∠OAP=90°,PA=4,OP=5,由勾股定理得:OA=3,
則⊙O的周長(zhǎng)為2π×3=6π,
故答案為:6π.
點(diǎn)評(píng): 本題考查了切線的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能正確作出輔助線,并求出∠OAP=90°,注意:圓的切線垂直于過(guò)切點(diǎn)的半徑.
3.(2015?棗莊,第15題4分)如圖,△ABC中,CD⊥AB于D,E是AC的中點(diǎn).若AD=6,DE=5,則CD的長(zhǎng)等于 8?。?
考點(diǎn):
勾股定理;直角三角形斜邊上的中線..
專(zhuān)題:
計(jì)算題.
分析:
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理來(lái)求線段CD的長(zhǎng)度即可.
解答:
解:如圖,∵△ABC中,CD⊥AB于D,E是AC的中點(diǎn),DE=5,
∴DE=AC=5,
∴AC=10.
在直角△ACD中,∠ADC=90°,AD=6,AC=10,則根據(jù)勾股定理,得
CD===8.
故答案是:8.
點(diǎn)評(píng):
本題考查了勾股定理,直角三角形斜邊上的中線.利用直角三角形斜邊上的中線等于斜邊的一半求得AC的長(zhǎng)度是解題的難點(diǎn).
4.(2015?甘肅慶陽(yáng),第20題,3分)在底面直徑為2cm,高為3cm的圓柱體側(cè)面上,用一條無(wú)彈性的絲帶從A至C按如圖所示的圈數(shù)纏繞,則絲帶的最短長(zhǎng)度為 cm.(結(jié)果保留π)
考點(diǎn): 平面展開(kāi)-最短路徑問(wèn)題..
分析: 根據(jù)繞兩圈到C,則展開(kāi)后相當(dāng)于求出直角三角形ACB的斜邊長(zhǎng),并且AB的長(zhǎng)為圓柱的底面圓的周長(zhǎng),BC的長(zhǎng)為圓柱的高,根據(jù)勾股定理求出即可.
解答: 解:如圖所示,
∵無(wú)彈性的絲帶從A至C,
∴展開(kāi)后AB=2πcm,BC=3cm,
由勾股定理得:AC==cm.
故答案為:.
點(diǎn)評(píng): 本題考查了平面展開(kāi)﹣?zhàn)疃搪肪€問(wèn)題和勾股定理的應(yīng)用,能正確畫(huà)出圖形是解此題的關(guān)鍵,用了數(shù)形結(jié)合思想.
5.(3分)(2015?寧夏)(第15題)如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點(diǎn)E,連接BE,將△BCE沿BE折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)F處,則CE的長(zhǎng)為 .
考點(diǎn):
翻折變換(折疊問(wèn)題).
分析:
設(shè)CE=x,由矩形的性質(zhì)得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折疊的性質(zhì)得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的長(zhǎng)度,進(jìn)而求出DF的長(zhǎng)度;然后在Rt△DEF根據(jù)勾股定理列出關(guān)于x的方程即可解決問(wèn)題.
解答:
解:設(shè)CE=x.
∵四邊形ABCD是矩形,
∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
∵將△BCE沿BE折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)F處,
∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.
在Rt△ABF中,由勾股定理得:
AF2=52﹣32=16,
∴AF=4,DF=5﹣4=1.
在Rt△DEF中,由勾股定理得:
EF2=DE2+DF2,
即x2=(3﹣x)2+12,
解得:x=,
故答案為.
點(diǎn)評(píng):
本題考查了折疊的性質(zhì):折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.也考查了勾股定理、矩形的性質(zhì)、方程思想等知識(shí),關(guān)鍵是熟練掌握勾股定理,找準(zhǔn)對(duì)應(yīng)邊.
6.(5分)(2015?畢節(jié)市)(第19題)如圖,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于點(diǎn)D,若CD=1,則BD= 2?。?
考點(diǎn): 含30度角的直角三角形;角平分線的性質(zhì).
分析: 根據(jù)角平分線性質(zhì)求出∠BAD的度數(shù),根據(jù)含30度角的直角三角形性質(zhì)求出AD即可得BD.
解答: 解:∵∠C=90°,∠B=30°,
∴∠CAB=60°,
AD平分∠CAB,
∴∠BAD=30°,
∴BD=AD=2CD=2,
故答案為2.
點(diǎn)評(píng): 本題考查了對(duì)含30度角的直角三角形的性質(zhì)和角平分線性質(zhì)的應(yīng)用,求出AD的長(zhǎng)是解此題的關(guān)鍵.
7.(4分)(2015?銅仁市)(第17題)如圖,∠ACB=9O°,D為AB中點(diǎn),連接DC并延長(zhǎng)到點(diǎn)E,使CE=CD,過(guò)點(diǎn)B作BF∥DE交AE的延長(zhǎng)線于點(diǎn)F.若BF=10,則AB的長(zhǎng)為 8?。?
考點(diǎn):
三角形中位線定理;直角三角形斜邊上的中線..
分析:
先根據(jù)點(diǎn)D是AB的中點(diǎn),BF∥DE可知DE是△ABF的中位線,故可得出DE的長(zhǎng),根據(jù)CE=CD可得出CD的長(zhǎng),再根據(jù)直角三角形的性質(zhì)即可得出結(jié)論.
解答:
解:∵點(diǎn)D是AB的中點(diǎn),BF∥DE,
∴DE是△ABF的中位線.
∵BF=10,
∴DE=BF=5.
∵CE=CD,
∴CD=5,解得CD=4.
∵△ABC是直角三角形,
∴AB=2CD=8.
故答案為:8.
點(diǎn)評(píng):
本題考查的是三角形中位線定理,熟知三角形的中位線平行于第三邊,并且等于第三邊的一半是解答此題的關(guān)鍵.
8.(2015?昆明第16題,3分)如圖,在Rt△ABC中,∠C=30°,以直角頂點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交BC于點(diǎn)D,過(guò)D作DE⊥AC于點(diǎn)E.若DE=a,則△ABC的周長(zhǎng)用含a的代數(shù)式表示為?。?+2)a?。?
考點(diǎn): 含30度角的直角三角形;等邊三角形的判定與性質(zhì);勾股定理..
分析: 先根據(jù)∠C=30°,∠BAC=90°,DE⊥AC可知BC=2AB,CD=2DE,再由AB=AD可知點(diǎn)D是斜邊BC的中點(diǎn),由此可用a表示出AB的長(zhǎng),根據(jù)勾股定理可得出AC的長(zhǎng),由此可得出結(jié)論.
解答: 解:∵∠C=30°,∠BAC=90°,DE⊥AC,
∴BC=2AB,CD=2DE=2a.
∵AB=AD,
∴點(diǎn)D是斜邊BC的中點(diǎn),
∴BC=2CD=4a,AB=BC=2a,
∴AC===2a,
∴△ABC的周長(zhǎng)=AB+BC+AC=2a+4a+2a=(6+2)a.
故答案為:(6+2)a.
點(diǎn)評(píng): 本題考查的是含30°的直角三角形,熟知在直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半是解答此題的關(guān)鍵.
9. (2015?溫州第8題4分)如圖,在Rt∠AOB的平分線ON上依次取點(diǎn)C,F(xiàn),M,過(guò)點(diǎn)C作DE⊥OC,分別交OA,OB于點(diǎn)D,E,以FM為對(duì)角線作菱形FGMH.已知∠DFE=∠GFH=120°,F(xiàn)G=FE,設(shè)OC=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( ?。?
A.y= B. y= C. y=2 D. y=3
考點(diǎn): 菱形的性質(zhì);等邊三角形的判定與性質(zhì);解直角三角形..
分析: 由在Rt∠AOB的平分線ON上依次取點(diǎn)C,F(xiàn),M,過(guò)點(diǎn)C作DE⊥OC,可得△OCD與△OCE是等腰直角三角形,即可得OC垂直平分DE,求得DE=2x,再由∠DFE=∠GFH=120°,可求得C與DF,EF的長(zhǎng),繼而求得△DF的面積,再由菱形FGMH中,F(xiàn)G=FE,得到△FGM是等邊三角形,即可求得其面積,繼而求得答案.
解答: 解:∵ON是Rt∠AOB的平分線,
∴∠DOC=∠EOC=45°,
∵DE⊥OC,
∴∠ODC=∠OEC=45°,
∴CD=CE=OC=x,
∴DF=EF,DE=CD+CE=2x,
∵∠DFE=∠GFH=120°,
∴∠CEF=30°,
∴CF=CE?tan30°=x,
∴EF=2CF=x,
∴S△DEF=DE?CF=x2,
∵四邊形FGMH是菱形,
∴FG=MG=FE=x,
∵∠G=180°﹣∠GFH=60°,
∴△FMG是等邊三角形,
∴S△FGH=x2,
∴S菱形FGMH=x2,
∴S陰影=S△DEF+S菱形FGMH=x2.
故選B.
點(diǎn)評(píng): 此題考查了菱形的性質(zhì)、等腰直角三角形的性質(zhì)、等邊三角形的判定與性質(zhì)以及三角函數(shù)等知識(shí).注意證得△OCD與△OCE是等腰直角三角形,△FGM是等邊三角形是關(guān)鍵.
10.(2015?長(zhǎng)沙,第18題3分)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上的一點(diǎn),若BC=6,AB=10,OD⊥BC于點(diǎn)D,則OD的長(zhǎng)為 4?。?
考點(diǎn): 垂徑定理;勾股定理.
分析: 根據(jù)垂徑定理求得BD,然后根據(jù)勾股定理求得即可.
解答: 解:∵OD⊥BC,
∴BD=CD=BC=3,
∵OB=AB=5,
∴OD==4.
故答案為4.
點(diǎn)評(píng): 題考查了垂徑定理、勾股定理,本題非常重要,學(xué)生要熟練掌握.
11.(2015?本溪,第16題3分)如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC=8,BD=6,OE⊥BC,垂足為點(diǎn)E,則OE= .
考點(diǎn): 菱形的性質(zhì)..
專(zhuān)題: 計(jì)算題.
分析: 先根據(jù)菱形的性質(zhì)得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理計(jì)算出BC=5,然后利用面積法計(jì)算OE的長(zhǎng).
解答: 解:∵四邊形ABCD為菱形,
∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,
在Rt△OBC中,∵OB=3,OC=4,
∴BC==5,
∵OE⊥BC,
∴OE?BC=OB?OC,
∴OE==.
故答案為.
點(diǎn)評(píng): 本題考查了菱形的性質(zhì):菱形具有平行四邊形的一切性質(zhì);菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角.也考查了勾股定理和三角形面積公式.
12.(2015?山東泰安,第23題3分))如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn).若AB=8,AD=12,則四邊形ENFM的周長(zhǎng)為 20?。?
考點(diǎn): 三角形中位線定理;勾股定理;矩形的性質(zhì)..
分析: 根據(jù)M是邊AD的中點(diǎn),得AM=DM=6,根據(jù)勾股定理得出BM=CM=10,再根據(jù)E、F分別是線段BM、CM的中點(diǎn),即可得出EM=FM=5,再根據(jù)N是邊BC的中點(diǎn),得出EM=FN,EN=FM,從而得出四邊形EN,F(xiàn)M的周長(zhǎng).
解答: 解:∵M(jìn)、N分別是邊AD、BC的中點(diǎn),AB=8,AD=12,
∴AM=DM=6,
∵四邊形ABCD為矩形,
∴∠A=∠D=90°,
∴BM=CM=10,
∵E、F分別是線段BM、CM的中點(diǎn),
∴EM=FM=5,
∴EN,F(xiàn)N都是△BCM的中位線,
∴EN=FN=5,
∴四邊形ENFM的周長(zhǎng)為5+5+5+5=20,
故答案為20.
點(diǎn)評(píng): 本題考查了三角形的中位線,勾股定理以及矩形的性質(zhì),是中考常見(jiàn)的題型,難度不大,比較容易理解.
13.(2015?通遼,第16題3分)如圖,在一張長(zhǎng)為7cm,寬為5cm的矩形紙片上,現(xiàn)要剪下一個(gè)腰長(zhǎng)為4cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與矩形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在矩形的邊上),則剪下的等腰三角形的面積為 8cm2或2cm2或2cm2?。?
考點(diǎn): 勾股定理;等腰三角形的判定;矩形的性質(zhì).
專(zhuān)題: 分類(lèi)討論.
分析: 因?yàn)榈妊切窝奈恢貌幻鞔_,所以分三種情況進(jìn)行討論:
(1)△AEF為等腰直角三角形,直接利用面積公式求解即可;
(2)先利用勾股定理求出AE邊上的高BF,再代入面積公式求解;
(3)先求出AE邊上的高DF,再代入面積公式求解.
解答: 解:分三種情況計(jì)算:
(1)當(dāng)AE=AF=4時(shí),如圖:
∴S△AEF=AE?AF=×4×4=8(cm2);
(2)當(dāng)AE=EF=4時(shí),如圖:
則BE=5﹣4=1,
BF===,
∴S△AEF=?AE?BF=×4×=2(cm2);
(3)當(dāng)AE=EF=4時(shí),如圖:
則DE=7﹣4=3,
DF===,
∴S△AEF=AE?DF=×4×=2(cm2);
故答案為:8或2或2.
點(diǎn)評(píng): 本題主要考查矩形的角是直角的性質(zhì)和勾股定理的運(yùn)用,要根據(jù)三角形的腰長(zhǎng)的不確定分情況討論,有一定的難度.
14.(2015?東營(yíng),第15題4分)如圖,水平放置的圓柱形排水管道的截面直徑是1m,其中水面的寬AB為0.8m,則排水管內(nèi)水的深度為 0.8 m.
考點(diǎn): 垂徑定理的應(yīng)用;勾股定理.
分析: 過(guò)O點(diǎn)作OC⊥AB,C為垂足,交⊙O于D,連OA,根據(jù)垂徑定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.
解答: 解:如圖,過(guò)O點(diǎn)作OC⊥AB,C為垂足,交⊙O于D、E,連OA,
OA=0.5m,AB=0.8m,
∵OC⊥AB,
∴AC=BC=0.4m,
在Rt△AOC中,OA2=AC2+OC2,
∴OC=0.3m,
則CE=0.3+0.5=0.8m,
故答案為:0.8.
點(diǎn)評(píng): 本題考查了垂徑定理的應(yīng)用,掌握垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對(duì)的弧是解題的關(guān)鍵,注意勾股定理的運(yùn)用.
15. (2015?東營(yíng),第17題4分)如圖,一只螞蟻沿著邊長(zhǎng)為2的正方體表面從點(diǎn)A出發(fā),經(jīng)過(guò)3個(gè)面爬到點(diǎn)B,如果它運(yùn)動(dòng)的路徑是最短的,則AC的長(zhǎng)為 .
考點(diǎn): 平面展開(kāi)-最短路徑問(wèn)題.
專(zhuān)題: 計(jì)算題.
分析: 將正方體展開(kāi),右邊與后面的正方形與前面正方形放在一個(gè)面上,此時(shí)AB最短,根據(jù)三角形MCB與三角形ACN相似,由相似得比例得到MC=2NC,求出CN的長(zhǎng),利用勾股定理求出AC的長(zhǎng)即可.
解答: 解:將正方體展開(kāi),右邊與后面的正方形與前面正方形放在一個(gè)面上,展開(kāi)圖如圖所示,此時(shí)AB最短,
∵△BCM∽△ACN,
∴=,即==2,即MC=2NC,
∴CN=MN=,
在Rt△ACN中,根據(jù)勾股定理得:AC==,
故答案為:.
點(diǎn)評(píng): 此題考查了平面展開(kāi)﹣?zhàn)疃搪窂絾?wèn)題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),勾股定理,熟練求出CN的長(zhǎng)是解本題的關(guān)鍵.
三.解答題
1.(2015?湘潭,第22題6分)如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長(zhǎng)度.
考點(diǎn):
相似三角形的判定與性質(zhì);翻折變換(折疊問(wèn)題)..
分析:
(1)根據(jù)折疊的性質(zhì)得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B證明三角形相似即可;
(2)由折疊的性質(zhì)知CD=DE,AC=AE.根據(jù)題意在Rt△BDE中運(yùn)用勾股定理求DE,進(jìn)而得出AD即可.
解答:
證明:(1)∵∠C=90°,△ACD沿AD折疊,
∴∠C=∠AED=90°,
∴∠DEB=∠C=90°,
∵∠B=∠B,
∴△BDE∽△BAC;
(2)由勾股定理得,AB=10.
由折疊的性質(zhì)知,AE=AC=6,DE=CD,∠AED=∠C=90°.
∴BE=AB﹣AE=10﹣6=4,
在Rt△BDE中,由勾股定理得,
DE2+BE2=BD2,
即CD2+42=(8﹣CD)2,
解得:CD=3,
在Rt△ACD中,由勾股定理得AC2+CD2=AD2,
即32+62=AD2,
解得:AD=.
點(diǎn)評(píng):
本題考查了相似三角形的判定和性質(zhì),關(guān)鍵是根據(jù)1、折疊的性質(zhì):折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),根據(jù)軸對(duì)稱(chēng)的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;2、勾股定理求解.
2.(2015?宜昌,第23題11分)如圖,四邊形ABCD為菱形,對(duì)角線AC,BD相交于點(diǎn)E,F(xiàn)是邊BA延長(zhǎng)線上一點(diǎn),連接EF,以EF為直徑作⊙O,交DC于D,G兩點(diǎn),AD分別于EF,GF交于I,H兩點(diǎn).
(1)求∠FDE的度數(shù);
(2)試判斷四邊形FACD的形狀,并證明你的結(jié)論;
(3)當(dāng)G為線段DC的中點(diǎn)時(shí),
①求證:FD=FI;
②設(shè)AC=2m,BD=2n,求⊙O的面積與菱形ABCD的面積之比.
考點(diǎn):
圓的綜合題;等腰三角形的判定;直角三角形斜邊上的中線;勾股定理;三角形中位線定理;平行四邊形的判定與性質(zhì);菱形的性質(zhì)..
專(zhuān)題:
綜合題.
分析:
(1)根據(jù)直徑所對(duì)的圓周角是直角即可得到∠FDE=90°;
(2)由四邊形ABCD是菱形可得AB∥CD,要證四邊形FACD是平行四邊形,只需證明DF∥AC,只需證明∠AEB=∠FDE,由于∠FDE=90°,只需證明∠AEB=90°,根據(jù)四邊形ABCD是菱形即可得到結(jié)論;
(3)①連接GE,如圖,易證GE是△ACD的中位線,即可得到GE∥DA,即可得到∠FHI=∠FGE=∠FGE=90°.根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DG=GE,從而有=,根據(jù)圓周角定理可得∠1=∠2,根據(jù)等角的余角相等可得∠3=∠4,根據(jù)等角對(duì)等邊可得FD=DI;②易知S⊙O=π()2=πm2,S菱形ABCD=?2m?2n=2mn,要求⊙O的面積與菱形ABCD的面積之比,只需得到m與n的關(guān)系,易證EI=EA=m,DF=AC=2m,EF=FI+IE=DF+AE=3m,在Rt△DEF中運(yùn)用勾股定理即可解決問(wèn)題.
解答:
解:(1)∵EF是⊙O的直徑,∴∠FDE=90°;
(2)四邊形FACD是平行四邊形.
理由如下:
∵四邊形ABCD是菱形,
∴AB∥CD,AC⊥BD,
∴∠AEB=90°.
又∵∠FDE=90°,
∴∠AEB=∠FDE,
∴AC∥DF,
∴四邊形FACD是平行四邊形;
(3)①連接GE,如圖.
∵四邊形ABCD是菱形,∴點(diǎn)E為AC中點(diǎn).
∵G為線段DC的中點(diǎn),∴GE∥DA,
∴∠FHI=∠FGE.
∵EF是⊙O的直徑,∴∠FGE=90°,
∴∠FHI=90°.
∵∠DEC=∠AEB=90°,G為線段DC的中點(diǎn),
∴DG=GE,
∴=,
∴∠1=∠2.
∵∠1+∠3=90°,∠2+∠4=90°,
∴∠3=∠4,
∴FD=FI;
②∵AC∥DF,∴∠3=∠6.
∵∠4=∠5,∠3=∠4,
∴∠5=∠6,∴EI=EA.
∵四邊形ABCD是菱形,四邊形FACD是平行四邊形,
∴DE=BD=n,AE=AC=m,F(xiàn)D=AC=2m,
∴EF=FI+IE=FD+AE=3m.
在Rt△EDF中,根據(jù)勾股定理可得:
n2+(2m)2=(3m)2,
即n=m,
∴S⊙O=π()2=πm2,S菱形ABCD=?2m?2n=2mn=2m2,
∴S⊙O:S菱形ABCD=.
點(diǎn)評(píng):
本題主要考查了菱形的性質(zhì)、圓周角定理、平行四邊形的判定與性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理、等角的余角相等、等角對(duì)等邊、平行線的性質(zhì)、勾股定理、圓及菱形的面積公式等知識(shí),綜合性強(qiáng),證到IE=EA,進(jìn)而得到EF=3m是解決第3(2)小題的關(guān)鍵.
3.(2015?永州,第24題10分)如圖,有兩條公路OM、ON相交成30°角,沿公路OM方向離O點(diǎn)80米處有一所學(xué)校A.當(dāng)重型運(yùn)輸卡車(chē)P沿道路ON方向行駛時(shí),在以P為圓心50米長(zhǎng)為半徑的圓形區(qū)域內(nèi)都會(huì)受到卡車(chē)噪聲的影響,且卡車(chē)P與學(xué)校A的距離越近噪聲影響越大.若一直重型運(yùn)輸卡車(chē)P沿道路ON方向行駛的速度為18千米/時(shí).
(1)求對(duì)學(xué)校A的噪聲影響最大時(shí)卡車(chē)P與學(xué)校A的距離;
(2)求卡車(chē)P沿道路ON方向行駛一次給學(xué)校A帶來(lái)噪聲影響的時(shí)間.
考點(diǎn):
勾股定理的應(yīng)用;垂徑定理的應(yīng)用..
分析:
(1)直接利用直角三角形中30°所對(duì)的邊等于斜邊的一半求出即可;
(2)根據(jù)題意可知,圖中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂徑定理及勾股定理解答即可.
解答:
解:(1)過(guò)點(diǎn)A作AD⊥ON于點(diǎn)D,
∵∠NOM=30°,AO=80m,
∴AD=40m,
即對(duì)學(xué)校A的噪聲影響最大時(shí)卡車(chē)P與學(xué)校A的距離為40米;
(2)由圖可知:以50m為半徑畫(huà)圓,分別交ON于B,C兩點(diǎn),AD⊥BC,BD=CD=BC,OA=800m,
∵在Rt△AOD中,∠AOB=30°,
∴AD=OA=×800=400m,
在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,
故BC=2×30=60米,即重型運(yùn)輸卡車(chē)在經(jīng)過(guò)BD時(shí)對(duì)學(xué)校產(chǎn)生影響.
∵重型運(yùn)輸卡車(chē)的速度為18千米/小時(shí),即=30米/分鐘,
∴重型運(yùn)輸卡車(chē)經(jīng)過(guò)BD時(shí)需要60÷30=2(分鐘).
答:卡車(chē)P沿道路ON方向行駛一次給學(xué)校A帶來(lái)噪聲影響的時(shí)間為2分鐘.
點(diǎn)評(píng):
此題考查的是垂徑定理與勾股定理在實(shí)際生活中的運(yùn)用,解答此題的關(guān)鍵是卡車(chē)在哪段路上運(yùn)行時(shí)對(duì)學(xué)校產(chǎn)生影響.
4. (2015江蘇連云港第16題3分)如圖,在△ABC中,∠BAC=60°,∠ABC=90°,直線l1∥l2∥l3,l1與l2之間距離是1,l2與l3之間距離是2.且l1、l2、l3分別經(jīng)過(guò)點(diǎn)A、B、C,則邊AC的長(zhǎng)為 ▲ .
【思路分析】
過(guò)點(diǎn)B作DE⊥l2,交l1于D,交l3于E,如圖,
∵DE⊥l2,l1∥l2∥l3,
∴DE⊥l1⊥l3,
∴∠ABD+∠DAB=90°,∠ADB=∠BEC=90°,
又∵∠ABC=90°,
∴∠ABD+∠EBC=90°,
∴∠DAB=∠EBC,
在△ABD和△BCE中,
∠ADB=∠BEC
∠DAB=∠EBC,
∴△ABD∽△BCE,
∴==
在△ABC中
∠BAC=60°,tan∠BAC==
∴===
∵DB=1,BE=2,
∴EC=,AD=
在△ABD和△BCE中,
EC=,BE=2,AD=,DB=1,
∴BC2=7,AB2=,
∴AC2=BC2+AB2=7+=
∴AC=
【答案】
【點(diǎn)評(píng)】本題考查了圖形翻折的性質(zhì)、勾股定理和銳角三角比的相關(guān)知識(shí).
5.(2015?通遼,第20題5分)如圖,建筑物AB后有一座假山,其坡度為i=1:,山坡上E點(diǎn)處有一涼亭,測(cè)得假山坡腳C與建筑物水平距離BC=25米,與涼亭距離CE=20米,某人從建筑物頂端測(cè)得E點(diǎn)的俯角為45°,求建筑物AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)
考點(diǎn): 解直角三角形的應(yīng)用-仰角俯角問(wèn)題;解直角三角形的應(yīng)用-坡度坡角問(wèn)題.
分析: 首先過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,過(guò)點(diǎn)E作EN⊥AB于點(diǎn)N,再利用坡度的定義以及勾股定理得出EF、FC的長(zhǎng),求出AB的長(zhǎng)即可.
解答: 解:過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,過(guò)點(diǎn)E作EN⊥AB于點(diǎn)N,
∵建筑物AB后有一座假山,其坡度為i=1:,
∴設(shè)EF=x,則FC=x,
∵CE=20米,
∴x2+(x)2=400,
解得:x=10,
則FC=10m,
∵BC=25m,∴BF=NE=(25+10)m,
∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,
答:建筑物AB的高為(35+10)m.
點(diǎn)評(píng): 本題考查了解直角三角形的應(yīng)用,要求學(xué)生借助坡角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形,難度適中.
6.(2015?烏魯木齊,第22題10分)如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于點(diǎn)D,DE⊥AD且與AC的延長(zhǎng)線交于點(diǎn)E.
(1)求證:DC=DE;
(2)若tan∠CAB=,AB=3,求BD的長(zhǎng).
考點(diǎn): 切線的性質(zhì);勾股定理;解直角三角形..
分析: (1)利用切線的性質(zhì)結(jié)合等腰三角形的性質(zhì)得出∠DCE=∠E,進(jìn)而得出答案;
(2)設(shè)BD=x,則AD=AB+BD=3+x,OD=OB+BD=1.5+x,利用勾股定理得出BD的長(zhǎng).
解答: (1)證明:連接OC,
∵CD是⊙O的切線,
∴∠OCD=90°,
∴∠ACO+∠DCE=90°,
又∵ED⊥AD,∴∠EDA=90°,
∴∠EAD+∠E=90°,
∵OC=OA,∴∠ACO=∠EAD,
故∠DCE=∠E,
∴DC=DE,
(2)解:設(shè)BD=x,則AD=AB+BD=3+x,OD=OB+BD=1.5+x,
在Rt△EAD中,
∵tan∠CAB=,∴ED=AD=(3+x),
由(1)知,DC=(3+x),在Rt△OCD中,
OC2+CD2=DO2,
則1.52+[(3+x)]2=(1.5+x)2,
解得:x1=﹣3(舍去),x2=1,
故BD=1.
點(diǎn)評(píng): 此題主要考查了切線的性質(zhì)以及以及勾股定理和等腰三角形的性質(zhì)等知識(shí),熟練應(yīng)用切線的性質(zhì)得出∠OCD=90°是解題關(guān)鍵.
o7.(2015?懷化,第21題8分)如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點(diǎn),以AC為直徑的⊙O與AB邊交于點(diǎn)D,連接DE
(1)求證:△ABC∽△CBD;
(2)求證:直線DE是⊙O的切線.
考點(diǎn): 切線的判定;相似三角形的判定與性質(zhì).
分析: (1)根據(jù)AC為⊙O的直徑,得出△BCD為Rt△,通過(guò)已知條件證明△BCD∽△BAC即可;
(2)連結(jié)DO,如圖,根據(jù)直角三角形斜邊上的中線性質(zhì),由∠BDC=90°,E為BC的中點(diǎn)得到DE=CE=BE,則利用等腰三角形的性質(zhì)得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根據(jù)切線的判定定理即可得到DE與⊙O相切.
解答: (1)證明:∵AC為⊙O的直徑,
∴∠ADC=90°,
∴∠BDC=90°,
又∵∠ACB=90°,
∴∠ACB=∠BDC,
又∵∠B=∠B,
∴△BCD∽△BAC;
(2)連結(jié)DO,如圖,
∵∠BDC=90°,E為BC的中點(diǎn),
∴DE=CE=BE,
∴∠EDC=∠ECD,
又∵OD=OC,
∴∠ODC=∠OCD,
而∠OCD+∠DCE=∠ACB=90°,
∴∠EDC+∠ODC=90°,即∠EDO=90°,
∴DE⊥OD,
∴DE與⊙O相切.
點(diǎn)評(píng): 本題考查了切線的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.也考查了直角三角形斜邊上的中線性質(zhì)和相似三角形的判定與性質(zhì).
8.(2015?懷化,第22題8分)如圖,已知Rt△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)P以每秒1個(gè)單位的速度從A向C運(yùn)動(dòng),同時(shí)點(diǎn)Q以每秒2個(gè)單位的速度從A→B→C方向運(yùn)動(dòng),它們到C點(diǎn)后都停止運(yùn)動(dòng),設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)在運(yùn)動(dòng)過(guò)程中,求P,Q兩點(diǎn)間距離的最大值;(2)經(jīng)過(guò)t秒的運(yùn)動(dòng),求△ABC被直線PQ掃過(guò)的面積S與時(shí)間t的函數(shù)關(guān)系式;
(3)P,Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在時(shí)間t,使得△PQC為等腰三角形?若存在,求出此時(shí)的t值;若不存在,請(qǐng)說(shuō)明理由(≈2.24,結(jié)果保留一位小數(shù))
考點(diǎn): 相似形綜合題.
分析: (1)如圖1,過(guò)Q作QE⊥AC于E,連接PQ,由△ABC∽△AQE,得到比例式,求得PE=,QE=,根據(jù)勾股定理得到PQ2=QE2+PE2,求出PQ=t,當(dāng)Q與B重合時(shí),PQ的值最大,于是得到當(dāng)t=5時(shí),PQ的最大值=3;
(2)由三角形的面積公式即可求得;
(3)存在,如圖2,連接CQ,PQ,分三種情況①當(dāng)CQ=CP時(shí),②當(dāng)PQ=CQ時(shí),③當(dāng)PQ=PC時(shí),列方程求解即可.
解答: 解:(1)如圖1,過(guò)Q作QE⊥AC于E,連接PQ,
∵∠C=90°,
∴QE∥BC,
∴△ABC∽△AQE,
∴,
∵AQ=2t,AP=t,
∵∠C=90°,AC=8,BC=6,
∴AB=10,
∴,
∴PE=,QE=,
∴PQ2=QE2+PE2,
∴PQ=t,
當(dāng)Q與B重合時(shí),PQ的值最大,
∴當(dāng)t=5時(shí),PQ的最大值=3;
(2)如圖1,△ABC被直線PQ掃過(guò)的面積=S△AQP,
當(dāng)Q在AB邊上時(shí),S=AP?QE=t?=,(0<t≤5)
當(dāng)Q在BC邊上時(shí),△ABC被直線PQ掃過(guò)的面積=S四邊形ABQP,
∴S四邊形ABQP=S△ABC﹣S△PQC=×8×6﹣(8﹣t)?(16﹣2t)=﹣t2+16t﹣40,(5<t≤8);
∴經(jīng)過(guò)t秒的運(yùn)動(dòng),△ABC被直線PQ掃過(guò)的面積S與時(shí)間t的函數(shù)關(guān)系式:S=或S=﹣t2+16t﹣40.
(3)存在,如圖2,連接CQ,PQ,
由(1)知QE=,CE=AC﹣AE=8﹣,PQ=t,
∴CQ====2,
①當(dāng)CQ=CP時(shí),
即:2=8﹣t,
解得;t=,
②當(dāng)PQ=CQ時(shí),
即;t=2,
解得:t=,t=(不合題意舍去),
③當(dāng)PQ=PC時(shí),
即t=8﹣t,
解得:t=3﹣5≈1.7;
綜上所述:當(dāng)t=,t=,t=1.7時(shí),△PQC為等腰三角形.
點(diǎn)評(píng): 本題考查了動(dòng)點(diǎn)問(wèn)題,相似三角形的判定和性質(zhì),三角形的面積,勾股定理,等腰三角形的性質(zhì),特別是(3)要分類(lèi)討論,不要漏解.
9.(2015?婁底,第22題8分)“為了安全,請(qǐng)勿超速”.如圖,一條公路建成通車(chē),在某直線路段MN限速60千米/小時(shí),為了檢測(cè)車(chē)輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車(chē)從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車(chē)超速了嗎?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.41,≈1.73)
考點(diǎn): 勾股定理的應(yīng)用.
分析: 根據(jù)題意結(jié)合銳角三角函數(shù)關(guān)系得出BH,CH,AB的長(zhǎng)進(jìn)而求出汽車(chē)的速度,進(jìn)而得出答案.
解答: 解:此車(chē)沒(méi)有超速.
理由:過(guò)C作CH⊥MN,
∵∠CBN=60°,BC=200米,
∴CH=BC?sin60°=200×=100(米),
BH=BC?cos60°=100(米),
∵∠CAN=45°,
∴AH=CH=100米,
∴AB=100﹣100≈73(m),
∵60千米/小時(shí)=m/s,
∴=14.6(m/s)<≈16.7(m/s),
∴此車(chē)沒(méi)有超速.
點(diǎn)評(píng): 此題主要考查了勾股定理以及銳角三角函數(shù)關(guān)系的應(yīng)用,得出AB的長(zhǎng)是解題關(guān)鍵.
&10.(2015年重慶B第25題12分)在△ABC中,AB=AC,∠A=60°,點(diǎn)D是線段BC的中點(diǎn),∠EDF=120°,DE與線段AB相交于點(diǎn)E,DF與線段AC(或AC的延長(zhǎng)線)相交于點(diǎn)F.
(1)如圖1,若DF⊥AC,垂足為F,AB=4,求BE的長(zhǎng);
(2)如圖2,將(1)中的∠EDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,DF扔與線段AC相交于點(diǎn)F.求證:;
(3)如圖3,將(2)中的∠EDF繼續(xù)繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長(zhǎng)線交與點(diǎn)F,作DN⊥AC于點(diǎn)N,若DN=FN,求證:.
【答案】2;略;略.
(2)、取AB的中點(diǎn)G,連接DG 易證:DG為△ABC的中位線,故DG=DC,∠BGD=∠C=60°
又四邊形AEDF的對(duì)角互補(bǔ),故∠GED=∠DFC ∴△DEG≌△DFC 故EG=CF
∴BE+CF=BE+EG=BG=AB
(3)、取AB的中點(diǎn)G,連接DG 同⑵,易證△DEG≌△DFC 故EG=CF
故BE-CF=BE-EG=BG= 設(shè) 在Rt△DCN中,CD=2x,DN=
在RT△DFN中,NF=DN=,故EG=CF= BE=BG+EG=DC+CF=2x+=
故BE+CF=
故
考點(diǎn):三角形全等、直角三角形的性質(zhì).
11.(2015·湖北省咸寧市,第23題10分)定義:數(shù)學(xué)活動(dòng)課上,樂(lè)老師給出如下定義:有一組對(duì)邊相等而另一組對(duì)邊不相等的凸四邊形叫做對(duì)等四邊形.
理解:(1)如圖1,已知A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請(qǐng)?jiān)诜礁駡D中畫(huà)出以格點(diǎn)為頂點(diǎn),AB、BC為邊的兩個(gè)對(duì)等四邊形ABCD;
(2)如圖2,在圓內(nèi)接四邊形ABCD中,AB是⊙O的直徑,AC=BD.求證:四邊形ABCD是對(duì)等四邊形;
(3)如圖3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,點(diǎn)A在BP邊上,且AB=13.用圓規(guī)在PC上找到符合條件的點(diǎn)D,使四邊形ABCD為對(duì)等四邊形,并求出CD的長(zhǎng).
考點(diǎn):
四邊形綜合題..
分析:
(1)根據(jù)對(duì)等四邊形的定義,進(jìn)行畫(huà)圖即可;
(2)連接AC,BD,證明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直徑,所以AB≠CD,即可解答;
(3)根據(jù)對(duì)等四邊形的定義,分兩種情況:①若CD=AB,此時(shí)點(diǎn)D在D1的位置,CD1=AB=13;②若AD=BC=11,此時(shí)點(diǎn)D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性質(zhì),求出相關(guān)相關(guān)線段的長(zhǎng)度,即可解答.
解答:
解:(1)如圖1所示(畫(huà)2個(gè)即可).
(2)如圖2,連接AC,BD,
∵AB是⊙O的直徑,
∴∠ADB=∠ACB=90°,
在Rt△ADB和Rt△ACB中,
∴Rt△ADB≌Rt△ACB,
∴AD=BC,
又∵AB是⊙O的直徑,
∴AB≠CD,
∴四邊形ABCD是對(duì)等四邊形.
(3)如圖3,點(diǎn)D的位置如圖所示:
①若CD=AB,此時(shí)點(diǎn)D在D1的位置,CD1=AB=13;
②若AD=BC=11,此時(shí)點(diǎn)D在D2、D3的位置,AD2=AD3=BC=11,
過(guò)點(diǎn)A分別作AE⊥BC,AF⊥PC,垂足為E,F(xiàn),
設(shè)BE=x,
∵tan∠PBC=,
∴AE=,
在Rt△ABE中,AE2+BE2=AB2,
即,
解得:x1=5,x2﹣5(舍去),
∴BE=5,AE=12,
∴CE=BC﹣BE=6,
由四邊形AECF為矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,,
∴,,
綜上所述,CD的長(zhǎng)度為13、12﹣或12+.
點(diǎn)評(píng):
本題主要考查了四邊形的綜合題,解題的關(guān)鍵是理解并能運(yùn)用“等對(duì)角四邊形”這個(gè)概念.在(3)中注意分類(lèi)討論思想的應(yīng)用、勾股定理的應(yīng)用.