2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 3.8解三角形應(yīng)用舉例課時(shí)作業(yè) 文(含解析)新人教版.doc
《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 3.8解三角形應(yīng)用舉例課時(shí)作業(yè) 文(含解析)新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 3.8解三角形應(yīng)用舉例課時(shí)作業(yè) 文(含解析)新人教版.doc(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 3.8解三角形應(yīng)用舉例課時(shí)作業(yè) 文(含解析)新人教版 一、選擇題 1.(xx茂名二模)為了在一條河上建一座橋,施工前在河兩岸打上兩個(gè)橋位樁A,B(如圖),要測(cè)量A,B兩點(diǎn)的距離,測(cè)量人員在岸邊定出基線BC,測(cè)得BC=50 m,∠ABC=105,∠BCA=45.就可以計(jì)算出A,B兩點(diǎn)的距離為( ) A.50 m B.50 m C.25 m D. m 解析:由正弦定理得=, ∴AB===50(m). 答案:A 2.(xx寧波模擬)某大學(xué)的大門蔚為壯觀,有個(gè)學(xué)生想搞清楚門洞拱頂D到其正上方A點(diǎn)的距離,他站在地面C處,利用皮尺量得BC=9米,利用測(cè)角儀測(cè)得仰角∠ACB=45,測(cè)得仰角∠BCD后通過(guò)計(jì)算得到sin∠ACD=,則AD的距離為( ) A.2米 B.2.5米 C.3米 D.4米 解析:設(shè)AD=x,則BD=9-x,CD=,在△ACD中應(yīng)用正弦定理得=,即=, 所以2[92+(9-x)2]=26x2,即81+81-18x+x2=13x2,所以2x2+3x-27=0,即(2x+9)(x-3)=0,所以x=3(米). 答案:C 3.(xx哈爾濱模擬)如圖,兩座相距60 m的建筑物AB,CD的高度分別為20 m,50 m,BD為水平面,則從建筑物AB的頂端A看建筑物CD的張角為( ) A.30 B.45 C.60 D.75 解析:依題意可得AD=20 m ,AC=30 m,又CD=50 m,所以在△ACD中,由余弦定理,得cos∠CAD====,又0<∠CAD<180,所以∠CAD=45,所以從頂端A看建筑物CD的張角為45. 答案:B 4.(xx大連模擬)如圖,測(cè)量河對(duì)岸的塔高AB時(shí),可以選與塔底B在同一水平面內(nèi)的兩個(gè)觀測(cè)點(diǎn)C與D,測(cè)得∠BCD=15,∠BDC=135,CD=30 m,并在點(diǎn)C處測(cè)得塔頂A的仰角為30,則塔高AB為( ) A.10 m B.10 m C.15 m D.10 m 解析:在△BCD中,∠CBD=180-15-135=30,由正弦定理,得=, 所以BC==30(m). 在Rt△ABC中,AB=BCtan∠ACB=30tan30=10(m). 答案:D 5.甲船在島B的正南A處,AB=10千米.甲船以每小時(shí)4千米的速度向北航行,同時(shí),乙船自B出發(fā)以每小時(shí)6千米的速度向北偏東60的方向駛?cè)ィ?dāng)甲船在A,B之間,且甲、乙兩船相距最近時(shí),它們所航行的時(shí)間是( ) A.分鐘 B.小時(shí) C.21.5分鐘 D.2.15分鐘 解析:如圖,設(shè)航行x小時(shí),甲船航行到C處,乙船航行到D處,在△BCD中,BC=10-4x,BD=6x,∠CBD=120,兩船相距S千米,根據(jù)余弦定理可得, DC2=BD2+BC2-2BCBDcos∠CBD=(6x)2+(10-4x)2-26x(10-4x)cos120,即S2=28x2-20x+100 =282+100-282, 所以當(dāng)x==時(shí),S2最小,從而S也最小,即航行60=分鐘時(shí)兩船相距最近.故選A. 答案:A 6.(xx廣州調(diào)研)如圖所示,長(zhǎng)為3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在離堤足C處1.4 m的地面上,另一端B在離堤足C處2.8 m的石堤上,石堤的傾斜角為α,則坡度值tanα等于( ) A. B. C. D. 解析:由題意,可得在△ABC中,AB=3.5 m,AC=1.4 m,BC=2.8 m,且∠α+∠ACB=π. 由余弦定理,可得AB2=AC2+BC2-2ACBCcos∠ACB,得3.52=1.42+2.82-21.42.8cos(π-α),解得cosα=,所以sinα=,所以tanα==. 答案:A 二、填空題 7.(xx宜昌模擬)甲船在A處觀察乙船,乙船在它的北偏東60的方向,兩船相距a海里的B處,乙船正向北行駛,若甲船是乙船速度的倍,甲船為了盡快追上乙船,則應(yīng)取北偏東__________(填角度)的方向前進(jìn). 解析:設(shè)兩船在C處相遇,則由題意∠ABC=180-60=120,且=, 由正弦定理得==?sin∠BAC=. 又0<∠BAC<60,所以∠BAC=30. 答案:30 8.(xx湘潭模擬)要測(cè)量底部不能到達(dá)的電視塔AB的高度,在C點(diǎn)測(cè)得塔頂A的仰角是45,在D點(diǎn)測(cè)得塔頂A的仰角是30,并測(cè)得水平面上的∠BCD=120,CD=40 m,則電視塔的高度為__________m. 解析:如圖,設(shè)電視塔AB高為x m, 則在Rt△ABC中,由∠ACB=45,得BC=x. 在Rt△ADB中,∠ADB=30, 所以BD=x. 在△BDC中,由余弦定理,得 BD2=BC2+CD2-2BCCDcos120, 即(x)2=x2+402-2x40cos120, 解得x=40,所以電視塔高為40 m. 答案:40 9.(xx杭州一中月考)如圖,一艘船上午9:30在A處測(cè)得燈塔S在它的北偏東30處,之后它繼續(xù)沿正北方向勻速航行,上午10:00到達(dá)B處,此時(shí)又測(cè)得燈塔S在它的北偏東75處,且與它相距8 n mile.此船的航速是__________n mile/h. 解析:設(shè)航速為v n mile/h,在△ABS中,AB=v,BS=8 n mile,∠BSA=45, 由正弦定理,得=,∴v=32n mile/h. 答案:32 三、解答題 10.(xx石家莊模擬)已知島A南偏西38方向,距島A 3海里的B處有一艘緝私艇.島A處的 一艘走私船正以10海里/時(shí)的速度向島北偏西22方向行駛,問(wèn)緝私艇朝何方向以多大速度行駛,恰好用0.5小時(shí)能截住該走私船? 解析:如圖,設(shè)緝私艇在C處截住走私船,D為島A正南方向上一點(diǎn),緝私艇的速度為每小時(shí)x海里,則BC=0.5x,AC=5海里,依題意,∠BAC=180-38-22=120, 由余弦定理可得BC2=AB2+AC2-2ABACcos120, 所以BC2=49,BC=0.5x=7,解得x=14. 又由正弦定理得sin∠ABC===,所以∠ABC=38,又∠BAD=38,所以BC∥AD, 故緝私艇以每小時(shí)14海里的速度向正北方向行駛,恰好用0.5小時(shí)截住該走私船. 11.(xx武漢二模)如圖所示,一輛汽車從O點(diǎn)出發(fā)沿一條直線公路以50千米/時(shí)的速度勻速行駛(圖中的箭頭方向?yàn)槠囆旭偡较?,汽車開動(dòng)的同時(shí),在距汽車出發(fā)點(diǎn)O點(diǎn)的距離為5千米、距離公路線的垂直距離為3千米的M點(diǎn)的地方有一個(gè)人騎摩托車出發(fā)想把一件東西送給汽車司機(jī).問(wèn)騎摩托車的人至少以多大的速度勻速行駛才能實(shí)現(xiàn)他的愿望,此時(shí)他駕駛摩托車行駛了多少千米? 解析:作MI垂直公路所在直線于點(diǎn)I,則MI=3千米,∵OM=5千米,∴OI=4千米, ∴cos∠MOI=. 設(shè)騎摩托車的人的速度為v千米/時(shí),追上汽車的時(shí)間為t小時(shí). 由余弦定理,得(vt)2=52+(50t)2-2550t, 即v2=-+2 500=252+900≥900, ∴當(dāng)t=時(shí),v取得最小值為30, ∴其行駛的距離為vt==千米. 故騎摩托車的人至少以30千米/時(shí)的速度行駛才能實(shí)現(xiàn)他的愿望,此時(shí)他駕駛摩托車行駛了千米. 12.(xx江蘇南京鹽城二模)如圖,經(jīng)過(guò)村莊A有兩條夾角為60的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個(gè)倉(cāng)庫(kù)M,N(異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計(jì)能使得工廠產(chǎn)生的噪聲對(duì)居民的影響最小(即工廠與村莊的距離最遠(yuǎn))? 解析:設(shè)∠AMN=θ,在△AMN中,=. 因?yàn)镸N=2,所以AM=sin(120-θ). 在△APM中,cos∠AMP=cos(60+θ). AP2=AM2+MP2-2AMMPcos∠AMP =sin2(120-θ)+4-22sin(120-θ)cos(60+θ) =sin2(θ+60)-sin(θ+60)cos(θ+60)+4 =[1-cos(2θ+120)]-sin(2θ+120)+4 =-[sin(2θ+120)+cos(2θ+120)]+ =-sin(2θ+150),θ∈(0,120). 當(dāng)且僅當(dāng)2θ+150=270,即θ=60時(shí),AP2取得最大值12,即AP取得最大值2. 所以當(dāng)∠AMN=60時(shí),符合要求.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 3.8解三角形應(yīng)用舉例課時(shí)作業(yè) 文含解析新人教版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 3.8 三角形 應(yīng)用 舉例 課時(shí) 作業(yè) 解析 新人
鏈接地址:http://ioszen.com/p-2518918.html