歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

東南大學幾何與代數(shù)第五六章習題解析總復習.ppt

  • 資源ID:2570715       資源大?。?span id="lbrr8kv" class="font-tahoma">2.11MB        全文頁數(shù):79頁
  • 資源格式: PPT        下載積分:14.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要14.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

東南大學幾何與代數(shù)第五六章習題解析總復習.ppt

,幾何與代數(shù),主講: 王小六,東 南 大 學 線 性 代 數(shù) 課 程,集體答疑通知,時間:1月 11 日,上午9:00-11:00; 下午1:00-4:45. 地點:教八400(西側(cè)樓梯口附近),本班答疑,16周周一下午3-4節(jié): 教四教師休息室 16周周三全天,周四中午和下午,周五上午:數(shù)學系525 同時歡迎網(wǎng)上答疑:QQ群, 課程中心,第五章 習題解析,P203選擇3: A為對角陣,意味著和A相似的矩陣是可相似對角化的。 二重特征值1對應著2個線性無關的特征向量, r(1E-A) = 3-2=1, 據(jù)此可排除(B,C,D),P204選擇6: 選擇(D) tE-A可看成f(A), f(x)= t x 或者(t x)k. 若A和B相似,則(tE-A)k與(tE-B)k也是相似的.,P204 T1(3):,|E-A|=, 0 0 -1 0 -1 0 0 -1 0 -1 0 0 ,= ,按照第一行或第一列展開,或者 =,r1 r4,r4 + r1,-1 0 0 0 -1 0 0 -1 0 0 0 -1,-,= ,2. A = = =3, a=1,4. A*的特征值是 0-1|A|,anxn + a1x + a0 +b1x-1+bmx-m,(x) =,(A)=,anAn + a1A +a0E +b1A-1+bmA-m,A = ,(A) =(),=,1.,如果對應著兩個線性無關的特征向量,1, 2 , 則需要對其進行組合k11+k22,其中k1,k2不全為零.(作業(yè)批注k1k20有誤),5.,A 1 1 1 T = 0 1 1 1 T,6. A2 3A + 2E = O 得 2 3 + 2 = 0,從而 = 1 或者 2,舉例: A = E 或者 2E,7. A2 = E 得不到 A=E,A2 = E = A2 E = O,A = ,=,2 1 = 0,=,= 1,假設 -1.,則 |A+E| 0.,則 A+E 可逆.,而A2 E = O意味著(A+E)(A E)=O .,兩邊同乘 (A+E)-1 ,則得結果.,10.,P1-1A1P1=B1, P2-1A2P2=B2,=,P1 P2,A1 A2,P1 P2,=,B1 B2,-1,P205 14.,1, 2 線性無關!,15.,有k (k1)重特征值也有可能線性相關!,只要k 重特征值對應k個線性無關的特征向量即可!,再次提醒:對角陣 的對角元一定要與相似變換矩陣 P 的列向量對應!,18.,P-1AP= = A = P P-1,19.,只是利用跡和行列式相同,得不到結果!,還需利用“特征值相同”!,15.,(5) 若用對角線法則計算|E-A|,易分解因式,P206 T20: 可聯(lián)系T14,P206 T22:,“ T ”類型問題 (,為n維列向量),聯(lián)系 P207: T32,T33,復習1. A= T = A2010 = ( T)2009 T,插曲:計算An 還可用:相似對角化; 另外,有時候A2 或A3 具有一 些迭代性質(zhì)也利于簡化計算.,復習2. r( T) r(), r( T) 1. 又因為T不是零矩陣,所以r(T) =1 特別的, 對于非零, r( T) =1. 所以,當 n1時,det( T)=0.,例.對于非零n(n1)維列向量, , 計算A= T 的特征值和特征向量.,因為 A = T = (T) = (T), 所以是一個對應于特征值1= T 的特征向量. 另外, Ax= 的基礎解系中共有 n-r(A) = n-1 個線性無關的解向量1 ,2 ,n-1 .它們是對應特征值2=0 的特征向量.,分析:可算得A2 = T A,從而知道A的特征值只能為 T 或者0(或者直接計算).,當T 0 時, 可得A有n個線性無關的特征向量,從而A可以相似對角化,其相似于,T,0,0,類似例題 A= T , 為實的非零列向量,注意,A為實對稱矩陣,一定可以相似對角化,相似于對角陣,T,0,0,P207 第32題,A = pT + qT,P207 第33題,B = A 1T,例 若A=(1, 2,n)是n階正交矩陣, 則 B=11T+ 2 2T+ +rrT (1rn)的特征多項式是?,習題五(B),26 注意(1) Q和是相伴相隨的; (2) 正交化時,只需對同一特征值的 特征向量進行正交化; (3) 不要忘記單位化.,27,此題僅利用跡和行列式相等得不到結果.,28,p1p3,p2p3,p3,P =(p1,p2,p3),A=P P-1,單位化,Q,A=QQT,29,類似28,行列式=0意味著一個特征值=0,30 A=QQT = r(A)=r(),A2=QQT QQT =Q2QT = r(A2)=r(2),又因為 r() = r(2),所以r(A) = r(A2),第六章 習題解析,P238填空4: A可逆= Ax= 只有零解 = 當x 時,Ax = xT(ATA)x = |Ax|2 0,P238填空5:,方法3 配方,方法1 寫出實對稱陣A, 順序主子式大于0,方法2 求A的特征值;,例,假設二次型f(x1,x2,x3)=x12+x22+ax32+4x1x2-2x2x3,1. 求一可逆線性變換x=Cy將f化成標準形;,(配方法更適合這題),2. 求f的矩陣A. 問:當參數(shù)a取什么值時,A的特征值大于零?(方法很多),P238填空6: f(x,y) = (a+b2)x2 - (bx-y)2 + 1. 令可逆變換 x = x, bx-y = y, 則 f(x,y) = (a+b2)x2 y2 + 1. 其在(0,0)達到極值 a+b20,P238填空10: 橢球面:特征值都大于零,正慣性指數(shù)=3, 正定矩陣; 柱面:(虛)橢圓柱面或者雙曲柱面,有一個共性:秩為2 (特征值兩正一零或一正一負一零),P238選擇(2):,類似例題:問下列哪些矩陣是等價的,相似的,合同的?,1 1 1,0 0 1,0 0 0 2,0 0 -1,0 0 0,(4),(5),(3),(2),(1),1 1 0 1,(6),總結: 假設A與B同階,A與B等價,秩相等,A與B相似,秩相等,行列式相等,跡相等,特征值相等,A與對角陣相似,k重特征值有k個線性無關的特征向量,A與對角陣相似,A為實對稱陣,A與對角陣相似,特征值互異,實對稱矩陣A與B相似,特征值相同,正確答案:,等價: (1),(4),(5); 以及 (2),(3),(6),相似: (1)(5);,合同: (1)(4)(5);,實對稱矩陣A與B合同,正負慣性指數(shù)相同,正負特征值個數(shù)相同,一個矩陣A若與對稱陣B合同, 則A必為對稱陣;,特別地, 一個矩陣A若與對角陣合同, 則A必為對稱陣;,據(jù)此, 可排除(6)與其他矩陣合同的可能性,C選項如何排除?取特殊 x=(0,0,1)T,如果一個方程的形式為,x2 + ay +bz + c = 0,其中a, b 不同時為零,那么它一定 表示一個拋物柱面.,P239選擇(10):,P238選擇(5):,P239第3題:即使實矩陣A不是對稱矩陣, xTAx 也是一個二次型,其對應的二次型矩陣為 (A+AT) .,xTAx,xT (A+AT)/2 x,xTAx +,直接分析,xTAx,=,xTAx +,(xTAx)T,例題:設A= ,若 xTAx=0對任意的n維列向量x成立, 則參數(shù) a,b,c,d 需要滿足什么條件?,a b c d,xTAx = xT x=0,a (b+c)/2 (b+c)/2 d,注: 填空題中可直接使用上面的結論, 證明題中視情況是否需要證明.,1(4),2 4 0 3 5 0 0 6,1 2 1 3 5/2 2 5/2 6,4,=,P1 P2,A C,P1 P2,=,B D,T,P239,4,反之不成立. 需舉反例.,7,注意要求是正交變換.,第(2)題 特征值互異,特征向量自然正交.,0 0 0 0 1 0 0 0 4,x=Q1y,y22 + 4y32,4 0 0 0 1 0 0 0 0,x=Q2y,4y12 + y22,8,(1) x3=y3 不能丟;,(2) 代換兩次后,需復合,最后應寫成 x=Pz的形式,10, =,0 0 0 2 0 0 0 5,與二次型對應,A = QQT = Q1/2 1/2 QT( 最好交代1/2) = Q1/2 QTQ 1/2 QT = (Q1/2 QT) (Q1/2 QT),P240第11題: xT(ATA)x 正定 x, xT(ATA)x 0 x, (Ax)TAx 0 x, |Ax|20 x, Ax Ax =沒有非零解 r(A) = 未知元的個數(shù) = A的列數(shù),P240第12題: 方法1: aii = ei AeiT 0, ei =0,0,1,0,0,第i個分量,方法2: A = PTP. 記 P = (pij )nn . 則 aii = p1i p1i + p2i p2i + pni pni,A = PTP 的另一個應用:,例題.設B為一個 n 階實對稱陣,A是n 階正定矩陣,則AB或BA的正負特征值的個數(shù)分別等于B 的正負慣性指數(shù).,AB = PTPB,(PT )-1 ABPT = PBPT,AB與PBPT 相似,所以它們具有相同的特征值。,PBPT與B合同,因此它們的正負慣性指數(shù)相同。從而結論得證。,P240第14題: 此題可直接用定義來證明.請注意在用定義說明一個矩陣C是正定時,需要強調(diào)x是非零的向量. 因為x=時, xTCx = 0 !,下面對矩陣ATA做些討論.,P240第13題: “負定”,P240第14題: 注意矩陣ATA不是正定陣: xT AT Ax =|Ax|2 0 (非負定),設mn矩陣A的秩為r, 則由一已知結論可得 r(ATA) = r(A) = r. 則 ATA 一定有r 個正的特征值, 剩余 n-r 個特征值均為0.,1 1 0 0,r個1,另外,ATA 與下列矩陣合同,1 1 0 0,r個1,事實上,設實對稱矩陣B的秩為r. 若 xTBx 0, n維列向量x, 則 B 一定有r 個正的特征值, 剩余 n-r 個特征值均為0.,另外,B與下列矩陣合同,P240第15題: 可先從特征值的角度說明A* 和 A-1 是正定的,然后利用下面例題的證明思路,或利用P239習六(B)第4題的結論.,6.1 二次型,第六章 二次型與二次曲面,例題. 設A, B都是實對稱矩陣, M =,A O O B,證明: M正定 A, B都正定.,證明: (), M正定,x, y , 0, 0, A, B都正定.,6.1 二次型,第六章 二次型與二次曲面,例題. 設A, B都是實對稱矩陣, M =,A O O B,證明: M正定 A, B都正定.,證明: (), 設P1AP =,M正定 1, , s, 1, , t 0, A, B都正定.,6.1 二次型,第六章 二次型與二次曲面,例題. 設A, B都是實對稱矩陣, M =,A O O B,證明: M正定 A, B都正定.,證明: (), 設A為s階的, 則當i s時,M正定 M的順序主子式 0, A, B的順序主子式 0,A,B,O,O,M的i階順序主子式,= A的i階順序主子式,當i s時, M的i階順序主子式,= |A|B的is階順序主子式, A, B都正定.,6.1 二次型,第六章 二次型與二次曲面,例題. 設A, B都是實對稱矩陣, M =,A O O B,證明: M正定 A, B都正定.,證明: (), 因為A, B都正定,PTAP = E, QTBQ = E,所以存在可逆陣P, Q使,因而M正定.,6.1 二次型,第六章 二次型與二次曲面,例題. 設A, B都是實對稱矩陣, M =,A O O B,證明: M正定 A, B都正定.,證明: (), 因為A, B都正定,A = PTP, B = QTQ,所以存在可逆陣P, Q使,因而M正定.,P240 17 題假設A是正定矩陣,B是實對稱矩陣,則存在可逆陣P使得PTAP, PTBP都為對角陣.,A正定,= 存在可逆P使PT AP=E,對于PT BP, 其是對稱的, 所以存在正交陣Q使得 QT (PT BP)Q= , 是對角陣,而QT (PT AP)Q =QTEQ=E,= 可取M=PQ,例題(06-07試題).若,都是可逆的,都是正定,也是正定矩陣,實對稱矩陣,且,矩陣,證明:,分析:可以利用“化成對角陣”的方法,用的其實是“化歸思想”.,P240 第20題:注意不必求出正交變換矩陣Q.,設實對稱陣A 的特征值為1, 2 , n . 則二次型 f=xTAx 在條件 x12 +x22 +xn2 =1 下的最大值一定是max1, 2 , n , 最小值一定是min1, 2 , n .,事實上,一定存在正交矩陣Q使得在可逆線性變換x=Qy下,二次型化為,我們可以總結:,f = 1y12 + 2 y22+ n yn2,且條件x12 +x22 +xn2 =1在正交變換下不變,即仍然成立 y12 +y22 +yn2 =1.,從而有, f max1, 2 , n (y12 +y22 +yn2 ) = max1, 2 , n ,以及, f min1, 2 , n (y12 +y22 +yn2 ) = min1, 2 , n ,且容易驗證上述最大最小值可以取到. (注意條件: x12 +x22 +xn2=1 ),聯(lián)想,例題.設n階實對稱陣A 的特征值為1, 2 , n . 證明: min xTAx/|x|2 :x = min1, 2 , n , max xTAx/|x|2 :x = max1, 2 , n , 其中x為n維列向量.,P241 第23題(6) 令 y = y+1,P241 第29題 投影曲線方程需聯(lián)立 z=0,P242 第35題 可逆線性變換也可化為標準形, 看出曲面類型.,P242 第37題 可以求出二次型部分的矩陣特 征值 2, k, 2-k, 據(jù)其正負討論曲面類型; 或者用配方法化為標準形討論.,P242 第33題 不要忘記“正交化”,本門課程的內(nèi)容體系,本門課程:研究矩陣的理論,第二章 矩陣 矩陣的定義和運算; 可逆矩陣:特殊矩陣; 分塊矩陣:為了更方便的運算; 初等變換:矩陣之間的一種變換;,第五章:相似變換(方陣),第六章:可逆變換(實對稱陣),特征值,慣性指數(shù),矩陣世界, 紛繁復雜, 如何找到不變的永恒,秩,第四章:向量空間是一種特殊的矩陣空間,尋找向量空間的極小生成元(基),尋找向量組的極大無關組,研究向量組中向量間的關系(線性相關性),有了基, 就有了坐標;,定義內(nèi)積,引入正交的概念,構造一組標準正交生成元,兩個 應用,刻畫矩陣A的列空間(列向量生成的子空間),刻畫Ax=的解空間,即尋找基礎解系等,第三章 幾何空間(R3): 可看作是第四章的鋪墊,也可看作一種特殊的向量空間。,第一章 行列式和方程組: 它們是研究矩陣的工具。很多問題會被轉(zhuǎn)化為求行列式(特別是遇到方陣時)或求解方程組的問題。,期末不作要求的內(nèi)容,3.5 空間直角坐標變換 4.6 線性方程組的最小二乘解 5.4 矩陣的Jordan標準形 Matlab,總復習 (難題,典型題),1. 化歸的思想,把一般的矩陣 對角陣 (相似,合同),把一般的矩陣 等價標準型,例題.證明:給定一個n n矩陣A,一定存在一個可逆陣P和一個矩陣C,使得 A = PC, 且 C2 =C.,提示:可聯(lián)系習題二(B) 29,28,分析:設 M, N 為可逆陣使得 A=MBN, 其中 B為A的等價標準形. 不難驗證 B2 = B. 令 C= N-1BN, P=MN, 命題得證.,2 “ T ”類型問題 (,為n維列向量),參見 P206 第22題,例. 設A與EA都可逆, G = (EA)1E, 求證G也 可逆, 并求G1.,證明: G = (EA)1 (EA)1(EA),= (EA)1(E (EA) = (EA)1A,G1 = A1(EA) = A1 E.,3. 會求逆矩陣,注:您是如何算函數(shù) (1-x)-1 -1 的倒數(shù)?,方法很多!,(3) (A+kE)(A+(1-k)E)=(2+k-k2)E,(A+kE)A+(1-k)E=E,(2+k-k2),P87 15題. 已知 A2+A-2E=O,當 2+k-k2 = 0時如何?,此時 k=2 (k要求是自然數(shù)), 則A+2E可逆嗎,由 A2+A-2E=O 得 (A+2E)(A-E)=O,若A+2E可逆, 則A=E,從而A+2E=3E,所以 (A+kE)-1 = E,4 熟悉矩陣運算 (1)如矩陣A的各行元素之和等于零,能得到什么? 如矩陣A的各列元素之和等于零,能得到什么?,(2) 聯(lián)系A與A*:AA*=|A|E,A與B相似,A可逆,則A*與B*相似.,A*的秩與A的秩之間的關系(習題二(B)31題).,(3) 設A,B是n階正交矩陣,并且|AB|=-1,證明|A+B|=0.,證:不妨設|A|=1,|B|=-1. 則|BT|=-1. |A+B|BT|=|ABT+BBT|=|ABT+E| =|ABT+AAT| =|A(BT+AT)| =|A|BT+AT|=|BT+AT|=|A+B|,(4) 設A為mn矩陣,B為nm矩陣,則有,tr(AB) =tr(BA),特別地, tr(T )=tr(T ),(5) 一般來說矩陣乘法不可交換,但當 AB=E 時, 則自然有 AB =BA.,例題(09-10-2幾代最后一題),假設A, B都是nn矩陣,若存在不為零的數(shù) x,y使得AB=xA+yB, 證明:AB=BA.,分析: AB-xA-yB = O,(A-yE)(B-xE) = xyE,(6)熟悉一些分塊矩陣的運算,(a) 若 AB=O, 則 A(b1,b2,bn) =(, ).,從而 Abi= , i =1, 2, , n; 也就是說B的列向量是Ax= 的解. 若bi不為零向量,還可以作為A的特征向量(前提是A為方陣).,(b) 若 A=(A1,A2,A3,A4), -2A1+A3-5A4= , 則 A(-2,0,1,-5)T = . 也就是說(-2,0,1,-5)T 是Ax= 的解.,5. 此類題需掌握,例. 當參數(shù)k取什么值時, 直線,相交?,例. 討論下列三個平面的相對位置.,1 : x+y+6z=3; 2 : 2x+(a+1)y+(b+1)z =7; 3 : (1-a)x + (2b-1)z =0.,其中,a, b 是參數(shù).,課后注釋:一般來說,第一步假定只有一個交點,此時可以得到a,b的一個范圍;在剩下的范圍內(nèi),a,b 是一些具體的取值,我們就可以通過求解對應的具體方程組,來判斷解的情況,從而判斷平面的位置關系.,Ax= 和 Ax=b解之間的 聯(lián)系及線性相關性,(1)熟練掌握P170-171: 32, 35, 36, 40,(2)根據(jù)參數(shù)討論方程組解的情形也是??嫉狞c,(3) 例題 已知44矩陣A的秩為3, 1,2,3是線性方程組Ax=b的解, 且1+2 =(2,4,6,8)T, 32-23 =(1,3,5,7)T, 則Ax=b的通解為,例題,7 矩陣方程 AX=B, XA=B (不管A可逆與否,A是方陣與否),AX=B有解 r(A,B)=r(A),XA=B有解 ATXT=BT有解,r(AT, BT) = r(AT),8 “AB”和“BA”,(1) tr(AB)=tr(BA);,(2) 若A或者B可逆,則AB與BA相似;,(3) 若A,B為n階方陣,則AB與BA的特征值相同.(如何證明?),(4)設A, B均為n階正定矩陣, 證明: AB為 正定矩陣當且僅當 AB = BA.,若A滿足A2=kA, 則A的特征值為k或者0;注意到A(A-kE)=O,所以r(A)+r(A-kE) n, 進一步可推得A有n個線性無關的特征向量,從而A可以相似對角化。,同理 A滿足A2=kE(k0)時,也一定可以相似對角化。,9. A2=kA, A2=kE,例 設n 階矩陣A 滿足A2 = 2A, 則以下結論中未必成立的是 . AI 可逆, 且(AI)1 = AI; A = O 或A = 2I; (C) 若2 不是A 的特征值, 則A = O; (D) |A| = 0 或A = 2I.,B,10. 會畫圖.,例題(09-10-2幾代試題),設1是拋物線 繞 y 軸旋轉(zhuǎn)所得曲面, 2是平面x-2y+z=4. 求1的方程;求1與2的交線在xOy平面上的投影曲線的方程;并畫出由1、2所圍成的空間有界區(qū)域的草圖.,1 : (x2+z2)+2y=0,2 : x-2y+z=4,消去z,x2+(4-x+2y)2+2y=0,聯(lián)立z=0, 得投影曲線方程,x-2y+z=4,1:,2:,x,y,z,o,4,4,-2,12 說明一個命題不成立,只需一個反例; 說明一個命題成立,一個例子是不夠的。,11 沒有辦法的時候,要想到從定義出發(fā)給出證明;或者“待定系數(shù)法”,天高任鳥飛 海闊憑魚躍,

注意事項

本文(東南大學幾何與代數(shù)第五六章習題解析總復習.ppt)為本站會員(sh****n)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!