《獨(dú)立性檢驗(yàn)的基本思想及其初步應(yīng)用》教學(xué)設(shè)計(jì)
-
資源ID:26455771
資源大?。?span id="gk5nvxh" class="font-tahoma">71.18KB
全文頁數(shù):9頁
- 資源格式: DOC
下載積分:15積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
《獨(dú)立性檢驗(yàn)的基本思想及其初步應(yīng)用》教學(xué)設(shè)計(jì)
《獨(dú)立性檢驗(yàn)的基本思想及其初步應(yīng)用》教學(xué)設(shè)計(jì)
一、教學(xué)內(nèi)容與內(nèi)容解析
1.內(nèi)容:
獨(dú)立性檢驗(yàn)的基本思想及實(shí)施步驟
2.內(nèi)容解析:
本節(jié)課利用獨(dú)立性檢驗(yàn)進(jìn)一步分析兩個(gè)分類變量之間是否有關(guān)系,是高中數(shù)學(xué)知識(shí)中體現(xiàn)統(tǒng)計(jì)思想的重要課節(jié)。
在本節(jié)課的教學(xué)中,要把重點(diǎn)放在獨(dú)立性檢驗(yàn)的統(tǒng)計(jì)學(xué)原理上,理解獨(dú)立性檢驗(yàn)的基本思想,明確獨(dú)立性檢驗(yàn)的基本步驟。在獨(dú)立性檢驗(yàn)中,通過典型案例的研究,介紹了獨(dú)立性檢驗(yàn)的基本思想、方法和初步應(yīng)用。獨(dú)立性檢驗(yàn)的基本思想和反證法類似,它們都是假設(shè)結(jié)論不成立,反證法是在假設(shè)結(jié)論不成立基礎(chǔ)上推出矛盾從而證得結(jié)論成立,而獨(dú)立性檢驗(yàn)是在假設(shè)結(jié)論不成立基礎(chǔ)上推出有利于結(jié)論成立的小概率事件發(fā)生,于是認(rèn)為結(jié)論在很大程度上是成立的。因?yàn)樾「怕适录谝淮卧囼?yàn)中通常是不會(huì)發(fā)生的,所以有利于結(jié)論成立的小概率事件的發(fā)生為否定假設(shè)提供了有力的證據(jù)。
學(xué)習(xí)獨(dú)立性檢驗(yàn)的目的是“通過典型案例介紹獨(dú)立性檢驗(yàn)的基本思想、方法及其初步應(yīng)用,使學(xué)生認(rèn)識(shí)統(tǒng)計(jì)方法在決策中的作用”。這是因?yàn)?,隨著現(xiàn)代信息技術(shù)飛速發(fā)展,信息傳播速度快,人們每天都會(huì)接觸到影響我們生活的統(tǒng)計(jì)方面信息,所以具備一些統(tǒng)計(jì)知識(shí)已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。
教學(xué)重點(diǎn):理解獨(dú)立性檢驗(yàn)的基本思想及實(shí)施步驟.
二、教學(xué)目標(biāo)與目標(biāo)解析
1.目標(biāo):
①知識(shí)與技能目標(biāo)
通過生活中新聞案例的探究,理解獨(dú)立性檢驗(yàn)的基本思想,明確獨(dú)立性檢驗(yàn)的基本步驟,會(huì)對(duì)兩個(gè)分類變量進(jìn)行獨(dú)立性檢驗(yàn),并能利用獨(dú)立性檢驗(yàn)的基本思想來解決實(shí)際問題。
②過程與方法目標(biāo)
通過探究“玩電腦游戲與注意力集中是否有關(guān)系”引出獨(dú)立性檢驗(yàn)的問題,借助樣本數(shù)據(jù)的列聯(lián)表分析獨(dú)立性檢驗(yàn)的實(shí)施步驟。利用上節(jié)課所學(xué)已經(jīng)由數(shù)據(jù)直觀判斷出玩電腦游戲與注意力集中可能有關(guān)系。這一直覺來自于觀測(cè)數(shù)據(jù),即樣本。問題是這種來自于樣本的印象能夠在多大程度上代表總體。這節(jié)課就是為了解決這個(gè)問題,在學(xué)生親身體驗(yàn)感受的基礎(chǔ)上,提高學(xué)生的數(shù)據(jù)分析能力。
③情感態(tài)度價(jià)值觀目標(biāo)
通過本節(jié)課的學(xué)習(xí),加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。以科學(xué)的態(tài)度評(píng)價(jià)兩個(gè)分類變量有關(guān)系的可能性。培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí),解決實(shí)際問題的能力。教學(xué)中適當(dāng)?shù)乩脤W(xué)生合作與交流,使學(xué)生在學(xué)習(xí)的同時(shí),體會(huì)與他人合作的重要性。
2.目標(biāo)解析:
獨(dú)立性檢驗(yàn)是考察兩個(gè)分類變量是否有關(guān)系,并且能較精確地給出這種判斷的可靠程度的一種重要的統(tǒng)計(jì)方法.利用獨(dú)立性檢驗(yàn),能夠幫助我們對(duì)日常生活中的實(shí)際問題作出合理的推斷和預(yù)測(cè).因此,在學(xué)習(xí)中通過對(duì)統(tǒng)計(jì)案例的分析,理解和掌握獨(dú)立性檢驗(yàn)的方法,體會(huì)獨(dú)立性檢驗(yàn)的基本思想在解決實(shí)際問題的應(yīng)用,以提高我們處理生活和工作中的某些問題的能力.
新課標(biāo)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有趣的和富有挑戰(zhàn)性的。從心理學(xué)的角度看,青少年有一種好奇的心態(tài)、探究的心理。因此,緊緊地抓住學(xué)生的這一特征,利用學(xué)生身邊的問題“玩電腦游戲與注意力集中是否有關(guān)系”,設(shè)計(jì)教學(xué)情境,使學(xué)生在觀察、討論等活動(dòng)中,逐步提高數(shù)據(jù)分析能力。
三、教學(xué)問題診斷分析
1.本節(jié)課的內(nèi)容獨(dú)立性檢驗(yàn)對(duì)學(xué)生來說是全新的內(nèi)容,為什么有這么一個(gè)方法?為什么要學(xué)習(xí)這個(gè)方法?通過課前的新聞引入可以讓學(xué)生體會(huì)到本節(jié)課知識(shí)的應(yīng)用性。
2.獨(dú)立性檢驗(yàn)相當(dāng)于建立一個(gè)判別“兩個(gè)分類變量之間有關(guān)系”這一結(jié)論是否成立的規(guī)則,并且給出該規(guī)則把“兩個(gè)分類變量之間沒有有關(guān)系”錯(cuò)判成“兩個(gè)分類變量之間有關(guān)系”的概率。所以首先要教會(huì)學(xué)生的是了解并初步理解這個(gè)規(guī)則,而后才是會(huì)用這個(gè)規(guī)則解決問題。
3.獨(dú)立性檢驗(yàn)難于理解的一個(gè)主要之處在于憑空出現(xiàn)一個(gè),這個(gè)隨機(jī)變量K2是怎樣構(gòu)造出來的,為什么如此構(gòu)造?教材在這一部分處理上,是先進(jìn)行某一臨界值的講解,而后再給出卡方臨界值表,這對(duì)于學(xué)生是比較難于理解的,為什么就給出這么一個(gè)臨界值呢?有這個(gè)問題的存在,學(xué)生對(duì)接下來所談到的內(nèi)容會(huì)有所懷疑,不一定十分認(rèn)同。為了突破這個(gè)難點(diǎn),我采用“先入為主”的思想,把教材后面介紹的卡方臨界值表提前講解,用概率知識(shí)解讀臨界值表的含義,讓學(xué)生先接受統(tǒng)計(jì)學(xué)上的知識(shí),而后在應(yīng)用過程中進(jìn)一步理解,這樣進(jìn)行調(diào)整后,學(xué)生對(duì)獨(dú)立性檢驗(yàn)的思想的接受就更容易一些。
教學(xué)難點(diǎn):①了解獨(dú)立性檢驗(yàn)的基本思想; ②了解隨機(jī)變量K2的含義,K2的觀測(cè)值很大,就認(rèn)為兩個(gè)分類變量是有關(guān)系的。
四、教學(xué)支持條件
為了有效實(shí)現(xiàn)教學(xué)目標(biāo),考慮到學(xué)生的知識(shí)水平和理解能力,從學(xué)生的認(rèn)知規(guī)律出發(fā),讓學(xué)生自主學(xué)習(xí),運(yùn)用探究式法,充分調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生逐步領(lǐng)會(huì)獨(dú)立性檢驗(yàn)的基本思想,掌握獨(dú)立性檢驗(yàn)的方法。
五、教學(xué)過程設(shè)計(jì)
⑴創(chuàng)設(shè)情境,提出問題
創(chuàng)設(shè)情境:最新研究發(fā)現(xiàn),花太多時(shí)間玩電腦游戲的兒童,患多動(dòng)癥的風(fēng)險(xiǎn)會(huì)加倍。青少年的大腦會(huì)很快習(xí)慣閃爍的屏幕、變幻莫測(cè)的電腦游戲,一旦如此,他們?cè)诮淌业纫曈X刺激較少的地方,就很難集中注意力。研究人員對(duì)1323名年齡在7歲到10歲的兒童進(jìn)行調(diào)查,并在孩子父母的幫助下記錄了他們?cè)?3個(gè)月里玩電腦游戲的習(xí)慣。同時(shí),教師記下這些孩子出現(xiàn)的注意力不集中問題。統(tǒng)計(jì)獲得下列數(shù)據(jù):
注意力不集中
注意力集中
總計(jì)
不玩電腦游戲
268
357
625
玩電腦游戲
489
209
698
總計(jì)
757
566
1323
根據(jù)這則網(wǎng)上收集到的新聞,利用上節(jié)課所學(xué)習(xí)的內(nèi)容。
提出問題:“從這則新聞中可以得出哪些結(jié)論?有多大把握認(rèn)為你所得出結(jié)論正確?”
預(yù)設(shè)回答:玩電腦游戲與注意力集中有關(guān)系。
【設(shè)計(jì)意圖】數(shù)學(xué)教學(xué)只有從問題開始才有其生命力,創(chuàng)設(shè)一個(gè)實(shí)際問題情境,既回顧了上節(jié)課的內(nèi)容,又提出本節(jié)課研究的問題。同時(shí)使學(xué)生體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,感受學(xué)習(xí)數(shù)學(xué)新知識(shí)的必要性.
學(xué)生在閱讀完材料后就能回答出第一個(gè)問題,但對(duì)第二個(gè)問題就會(huì)沒有解決的思路,這樣可以讓學(xué)生帶著問題進(jìn)入到下面的學(xué)習(xí)中,同時(shí)明確本節(jié)課的核心問題突出重點(diǎn)。
⑵探究歸納,解決問題
①啟發(fā)探究
引導(dǎo)性語言:有多大把握認(rèn)為“兩個(gè)分類變量有關(guān)系”,這是個(gè)概率問題。要研究?jī)蓚€(gè)分類變量有關(guān)系可以先研究其沒有關(guān)系即是否獨(dú)立,就是研究其獨(dú)立的概率關(guān)系,在用頻率代替概率后,假設(shè)H0:玩電腦游戲與注意力集中沒有關(guān)系;用A表示不玩電腦游戲;用B表示注意力不集中;
若H0成立事件A與事件B獨(dú)立
提出問題:在假設(shè)H0成立的條件下,能推導(dǎo)出a,b,c,d有怎樣的關(guān)系?
學(xué)生活動(dòng):利用列聯(lián)表推導(dǎo)。
預(yù)設(shè)回答:。
【設(shè)計(jì)意圖】要研究?jī)蓚€(gè)分類變量有關(guān)系是不容易解決的問題,本著“正難則反”的思想方法,借助反證法的思考模式,將問題轉(zhuǎn)化為兩個(gè)分類變量獨(dú)立,利用事件獨(dú)立的概率相關(guān)知識(shí),用頻率代替概率,利用列聯(lián)表由學(xué)生自己動(dòng)手推導(dǎo)出,在H0成立的條件下有,進(jìn)而引出隨機(jī)變量K2公式中的部分結(jié)構(gòu)。
②新知解讀
引導(dǎo)性提問:通過上述推導(dǎo)得到,為表示其差異性,將其轉(zhuǎn)化成,那么直觀上的大小能說明什么?
預(yù)設(shè)回答:值越小,越獨(dú)立,兩個(gè)分類變量關(guān)系越弱;值越大,越不獨(dú)立,兩個(gè)分類變量關(guān)系越強(qiáng)。
引導(dǎo)性語言:為了使不同樣本的數(shù)據(jù)有一個(gè)統(tǒng)一而又合理的評(píng)判標(biāo)準(zhǔn),統(tǒng)計(jì)學(xué)家們經(jīng)過研究后構(gòu)造了一個(gè)隨機(jī)變量=
隨機(jī)變量服從卡方分布,它類似我們前面學(xué)習(xí)過的正態(tài)分布。
同時(shí)統(tǒng)計(jì)學(xué)家們還得到了如下的卡方臨界值表:
P(K2≥k0)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
以k0=6.635為例,,就是說在H0成立的條件下,計(jì)算出隨機(jī)變量的觀測(cè)值大于等于6.635的概率不超過0.01,也就是有99%的情況下其觀測(cè)值是小于6.635的。
【設(shè)計(jì)意圖】隨機(jī)變量的理解是本節(jié)課的難點(diǎn)之一,利用概率知識(shí)解讀卡方臨界值表中數(shù)據(jù)的含義,有助于學(xué)生理解獨(dú)立性檢驗(yàn)的基本思想。
本環(huán)節(jié)我沒有按照教材的呈現(xiàn)順序,而是將卡方臨界值表提到前面來講解,這樣改變后能使學(xué)生首先了解隨機(jī)變量K2的含義,并能體會(huì)到如果K2的觀測(cè)值很大,就認(rèn)為兩個(gè)分類變量是有關(guān)系的合理性,為后面引出獨(dú)立性檢驗(yàn)的規(guī)則做好鋪墊。達(dá)到突破難點(diǎn)的目的。
③分組討論
提出問題:利用卡方臨界值表和K2的觀測(cè)值k判斷:接受H0?認(rèn)為玩電腦游戲和注意力集中沒有關(guān)系;還是拒絕H0?認(rèn)為玩電腦游戲和注意力集中有關(guān)系。
學(xué)生活動(dòng):利用卡方臨界值表和K2的觀測(cè)值k進(jìn)行小組討論,選擇他們認(rèn)為正確的結(jié)論。
【設(shè)計(jì)意圖】讓學(xué)生自己通過對(duì)卡方臨界值概率的理解,親身去體會(huì)是接受H0還是拒絕H0,實(shí)現(xiàn)教學(xué)重點(diǎn),即理解獨(dú)立性檢驗(yàn)的基本思想。
本環(huán)節(jié)設(shè)計(jì)為由學(xué)生先進(jìn)行小組討論,有些學(xué)生不會(huì)利用所學(xué)知識(shí)來分析問題,通過小組討論,用集體的力量來進(jìn)行知識(shí)的學(xué)習(xí),能增強(qiáng)學(xué)生對(duì)獨(dú)立性檢驗(yàn)的了解,并體會(huì)到合作的有效作用。
④總結(jié)提升
引導(dǎo)性語言:通過上面的學(xué)習(xí)過程,你能歸納獨(dú)立性檢驗(yàn)的一般步驟嗎?
預(yù)設(shè)回答:一般地,對(duì)于兩個(gè)研究對(duì)象Ⅰ和Ⅱ,Ⅰ有兩類取值,即類A和類B(如注意力集中與注意力不集中);Ⅱ也有兩類取值,即類1和類2(如玩電腦游戲與不玩電腦游戲)。于是得到下列聯(lián)表所示的抽樣數(shù)據(jù):
類1
類2
總計(jì)
類A
a
b
a+b
類B
c
d
c+d
總計(jì)
a+c
b+d
a+b+c+d
要推斷“Ⅰ和Ⅱ有關(guān)系”,可按下面的步驟進(jìn)行:
1.提出假設(shè)H0:Ⅰ和Ⅱ沒有關(guān)系;
2.根據(jù)22列聯(lián)表與公式計(jì)算K2的值;
3.查對(duì)臨界值,作出判斷。
【設(shè)計(jì)意圖】讓學(xué)生再次經(jīng)歷問題解決的過程,既深化對(duì)該統(tǒng)計(jì)思想的理解,又掌握應(yīng)用獨(dú)立性檢驗(yàn)解決問題的步驟。
⑶成果展示,鞏固提升
引導(dǎo)性語言:課前各小組都收集了你們感興趣的分類變量的相關(guān)數(shù)據(jù),利用本節(jié)課我們所學(xué)的獨(dú)立性檢驗(yàn)進(jìn)行判斷,看各自有對(duì)大的把握認(rèn)為它們有關(guān)系?
學(xué)生活動(dòng):小組內(nèi)進(jìn)行檢驗(yàn),而后每小組由一名學(xué)生進(jìn)行研究成果展示。
【設(shè)計(jì)意圖】各小組將各自收集的分類變量數(shù)據(jù)進(jìn)行獨(dú)立性檢驗(yàn),并將檢驗(yàn)結(jié)果展示給全體同學(xué),加深本組及其它各組學(xué)生對(duì)獨(dú)立性檢驗(yàn)思想的理解,體驗(yàn)數(shù)學(xué)在實(shí)際生活中的應(yīng)用。同時(shí)用學(xué)生收集的分類變量數(shù)據(jù)做練習(xí),更能提高學(xué)生的參與興趣。
⑷小結(jié)引申,構(gòu)建體系
由學(xué)生談本節(jié)課學(xué)習(xí)的收獲,并對(duì)所學(xué)內(nèi)容進(jìn)行歸納。
【設(shè)計(jì)意圖】初步形成以科學(xué)的態(tài)度評(píng)價(jià)兩個(gè)分類變量有關(guān)系的可能性。
六、目標(biāo)檢測(cè)設(shè)計(jì)
第1、2題。
【設(shè)計(jì)意圖】通過作業(yè)進(jìn)一步構(gòu)建獨(dú)立性檢驗(yàn)的思想體系。