歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

數(shù)學物理方法常微分方程的本征值問題.ppt

  • 資源ID:2851736       資源大?。?span id="ualwwci" class="font-tahoma">465KB        全文頁數(shù):19頁
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

數(shù)學物理方法常微分方程的本征值問題.ppt

1,一、Sturm – Liouville 型方程,它與一定的線性齊次邊界條件或周期性條件 或自然邊界條件可以構成本征值問題,稱為 S-L型本征值問題。,2,二、幾種常見的S-L型本征值問題,3,①,4,②,5,2、Bessel方程的本征值問題,6,3、Legendre 方程的本征值問題,7,這個本征值問題來自量子力學中的諧振子問題,4、Hermite 方程的本征值問題,8,這個本征值問題來自量子力學中的氫原子問題,5、Laguerre 方程的本征值問題,9,三、正交函數(shù)系,如果函數(shù)是復函數(shù),則寫為,2、歸一化定義:,由正交定義,對一本征函數(shù)系,當 時,,當 時,,10,稱為歸一化因子。,則有,稱 為正交歸一函數(shù)系,11,3、完備性條件,4、完備性定義:在相應敬意上滿足狄里赫利條件 的任意函數(shù) 可以用正交完備函數(shù)系展開成 傅里葉級數(shù),即:,可用正交歸一條件求得,即,12,狄里赫利條件: 在 上只有有限個第一類間 斷點,且只有有限個極值點。,四、S—L型本征值問題的性質,13,2、性質,① 結論1:所有本征值都是實數(shù),且非負,即,14,③ 結論3:對應于不同本征值的本征函數(shù) , 在區(qū)間 上帶權函數(shù) 正交,即:,展開為絕對且一致收斂,即:,廣義傅里葉級數(shù)。,③ 結論4:本征函數(shù)系在區(qū)間 構成一個完備 系,即任意一個具有二階連續(xù)導數(shù)的函數(shù) , 只要它滿足本征值問題中的邊界條件,均可以用,15,16,17,,,18,,,19,,,

注意事項

本文(數(shù)學物理方法常微分方程的本征值問題.ppt)為本站會員(xt****7)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!