歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第12章 選修4系列 第1講 坐標(biāo)系講義 理(含解析).doc

  • 資源ID:3911803       資源大?。?span id="gtpbbhn" class="font-tahoma">142.50KB        全文頁數(shù):8頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號:
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第12章 選修4系列 第1講 坐標(biāo)系講義 理(含解析).doc

第1講 坐標(biāo)系 [考綱解讀] 1.了解坐標(biāo)系的作用,掌握平面直角坐標(biāo)系中的伸縮變換. 2.了解極坐標(biāo)的基本概念,能在極坐標(biāo)系中用極坐標(biāo)表示點(diǎn)的位置,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.(重點(diǎn)) 3.能在極坐標(biāo)系中給出簡單圖形(如過極點(diǎn)的直線、過極點(diǎn)或圓心為極點(diǎn)的圓)的方程.(難點(diǎn)) [考向預(yù)測] 從近三年高考情況來看,本講是高考中的必考內(nèi)容. 預(yù)測2020年將會考查:極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,極坐標(biāo)方程化為直角坐標(biāo)方程,要特別注意圖象的伸縮變換. 題型為解答題,屬中、低檔題型. 1.伸縮變換 設(shè)點(diǎn)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換φ:的作用下,點(diǎn)P(x,y)對應(yīng)到點(diǎn)P′(x′,y′),稱φ為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換. 2.極坐標(biāo) 一般地,不作特殊說明時(shí),我們認(rèn)為ρ≥0,θ可取任意實(shí)數(shù). 3.極坐標(biāo)與直角坐標(biāo)的互化 設(shè)M是平面內(nèi)任意一點(diǎn),它的直角坐標(biāo)是(x,y),極坐標(biāo)是(ρ,θ),則它們之間的關(guān)系為: 1.概念辨析 (1)平面直角坐標(biāo)系內(nèi)的點(diǎn)與坐標(biāo)能建立一一對應(yīng)關(guān)系,在極坐標(biāo)系中點(diǎn)與坐標(biāo)也是一一對應(yīng)關(guān)系.(  ) (2)點(diǎn)P的直角坐標(biāo)為(-,),那么它的極坐標(biāo)可表示為.(  ) (3)過極點(diǎn)作傾斜角為α的直線的極坐標(biāo)方程可表示為θ=α或θ=π+α.(  ) (4)圓心在極軸上的點(diǎn)(a,0)處,且過極點(diǎn)O的圓的極坐標(biāo)方程為ρ=2asinθ.(  ) 答案 (1) (2)√ (3)√ (4) 2.小題熱身 (1)設(shè)平面內(nèi)伸縮變換的坐標(biāo)表達(dá)式為則在這一坐標(biāo)變換下正弦曲線y=sinx的方程變?yōu)?  ) A.y=sin2x B.y=3sinx C.y=sin D.y=3sin2x 答案 D 解析 由已知得代入y=sinx,得y′=sin2x′,即y′=3sin2x′,所以y=sinx的方程變?yōu)閥=3sin2x. (2)在極坐標(biāo)系中A,B兩點(diǎn)間的距離為________. 答案 6 解析 解法一:(數(shù)形結(jié)合)在極坐標(biāo)系中,A,B兩點(diǎn)如圖所示, |AB|=|OA|+|OB|=6. 解法二:∵A,B的直角坐標(biāo)為A(1,-), B(-2,2),∴|AB|==6. (3)曲線C1:θ=與曲線C2:ρsin=的交點(diǎn)坐標(biāo)為________. 答案  解析 將θ=代入ρsin=,得ρsin=,所以ρ=1,所以曲線C1與曲線C2的交點(diǎn)坐標(biāo)為. (4)已知直線l的極坐標(biāo)方程為2ρsin=,點(diǎn)A的極坐標(biāo)為A,則點(diǎn)A到直線l的距離為________. 答案  解析 由2ρsin=得2ρ=,ρsinθ-ρcosθ=1,化為直角坐標(biāo)方程得y-x=1即x-y+1=0,點(diǎn)A的直角坐標(biāo)為,即(2,-2),所以點(diǎn)A到直線l的距離為=. 題型  平面直角坐標(biāo)系中的伸縮變換 在同一平面直角坐標(biāo)系中,求一個伸縮變換,使得圓x2+y2=1變換為橢圓+=1. 解 設(shè)伸縮變換為由題知+=1,即2x2+2y2=1.與x2+y2=1比較系數(shù),得故所以伸縮變換為 即先使圓x2+y2=1上的點(diǎn)的縱坐標(biāo)不變,將圓上的點(diǎn)的橫坐標(biāo)伸長到原來的3倍,得到橢圓+y2=1,再將該橢圓上點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)伸長到原來的2倍,得到橢圓+=1. 伸縮變換后方程的求法 平面上的曲線y=f(x)在變換φ:的作用下的變換方程的求法是將代入y=f(x),得=f,整理之后得到y(tǒng)′=h(x′),即為所求變換之后的方程.見舉例說明. 提醒:應(yīng)用伸縮變換時(shí),要分清變換前的點(diǎn)的坐標(biāo)(x,y)與變換后的坐標(biāo)(x′,y′). 若函數(shù)y=f(x)的圖象在伸縮變換φ:的作用下得到曲線的方程為y′=3sin,求函數(shù)y=f(x)的最小正周期. 解 由題意,把變換公式代入曲線y′=3sin得3y=3sin,整理得y=sin,故f(x)=sin.所以y=f(x)的最小正周期為=π. 題型  極坐標(biāo)與直角坐標(biāo)的互化 (2018全國卷Ⅰ)在直角坐標(biāo)系xOy中,曲線C1的方程為y=k|x|+2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2+2ρcosθ-3=0. (1)求C2的直角坐標(biāo)方程; (2)若C1與C2有且僅有三個公共點(diǎn),求C1的方程. 解 (1)由x=ρcosθ,y=ρsinθ,得C2的直角坐標(biāo)方程為(x+1)2+y2=4. (2)由(1)知C2是圓心為A(-1,0),半徑為2的圓. 由題設(shè)知,C1是過點(diǎn)B(0,2)且關(guān)于y軸對稱的兩條射線,曲線C1的方程為y=記y軸右邊的射線為l1,y軸左邊的射線為l2.由于B在圓C2的外面,故C1與C2有且僅有三個公共點(diǎn)等價(jià)于l1與C2只有一個公共點(diǎn)且l2與C2有兩個公共點(diǎn),或l2與C2只有一個公共點(diǎn)且l1與C2有兩個公共點(diǎn). 當(dāng)l1與C2只有一個公共點(diǎn)時(shí),A到l1所在直線的距離為2,所以=2,故k=-或k=0. 經(jīng)檢驗(yàn),當(dāng)k=0時(shí),l1與C2沒有公共點(diǎn);當(dāng)k=-時(shí),l1與C2只有一個公共點(diǎn),l2與C2有兩個公共點(diǎn). 當(dāng)l2與C2只有一個公共點(diǎn)時(shí),A到l2所在直線的距離為2,所以=2,故k=0或k=. 經(jīng)檢驗(yàn),當(dāng)k=0時(shí),l1與C2沒有公共點(diǎn);當(dāng)k=時(shí),l2與C2沒有公共點(diǎn). 綜上,所求C1的方程為y=-|x|+2. 條件探究 把舉列說明中曲線C1的極坐標(biāo)方程改為“θ=α(0≤α≤2π)”,曲線C2的極坐標(biāo)方程改為“ρ2-2ρcosθ-2ρsinθ+3=0”,若C1與C2有且僅有兩個公共點(diǎn),求α的取值范圍. 解 由x=ρcosθ,y=ρsinθ得曲線C2的直角坐標(biāo)方程為x2+y2-2x-2y+3=0, 即(x-1)2+(y-)2=1, 由題意知α≠, 可設(shè)曲線C1的直角坐標(biāo)方程為y=kx,k=tanα, 當(dāng)曲線C1與曲線C2相切時(shí),=1, 解得k=,即tanα=, 又0≤α≤2π,所以α=. 結(jié)合圖形可知,若C1與C2有且僅有兩個公共點(diǎn),則 α∈. 1.極坐標(biāo)方程與直角坐標(biāo)方程的互化 (1)直角坐標(biāo)方程化為極坐標(biāo)方程:將公式x=ρcosθ及y=ρsinθ直接代入直角坐標(biāo)方程并化簡即可. (2)極坐標(biāo)方程化為直角坐標(biāo)方程:通過變形,構(gòu)造出形如ρcosθ,ρsinθ,ρ2的形式,再應(yīng)用公式進(jìn)行代換.其中方程的兩邊同乘以(或同除以)ρ及方程兩邊平方是常用的變形技巧. 2.極角的確定 由tanθ確定角θ時(shí),應(yīng)根據(jù)點(diǎn)P所在象限取最小正角. (1)當(dāng)x≠0時(shí),θ角才能由tanθ=按上述方法確定. (2)當(dāng)x=0時(shí),tanθ沒有意義,這時(shí)可分三種情況處理:當(dāng)x=0,y=0時(shí),θ可取任何值;當(dāng)x=0,y>0時(shí),可取θ=;當(dāng)x=0,y<0時(shí),可取θ=.                     已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2,ρ2-2ρcos=2. (1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程; (2)求經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程. 解 (1)由ρ=2知ρ2=4,所以圓O1的直角坐標(biāo)方程為x2+y2=4.因?yàn)棣?-2ρcos=2, 所以ρ2-2ρ=2, 所以圓O2的直角坐標(biāo)方程為x2+y2-2x-2y-2=0. (2)將兩圓的直角坐標(biāo)方程相減,得經(jīng)過兩圓交點(diǎn)的直線方程為x+y=1,化為極坐標(biāo)方程為ρcosθ+ρsinθ=1,即ρsin=. 題型  極坐標(biāo)方程的應(yīng)用 角度1 極徑幾何意義的應(yīng)用 1.(2018日照一模)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ=(ρ∈R). (1)求曲線C的極坐標(biāo)方程; (2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|AB|的值. 解 (1)將方程消去參數(shù)α得x2+y2-4x-12=0, ∴曲線C的普通方程為x2+y2-4x-12=0,將x2+y2=ρ2,x=ρcosθ代入上式可得ρ2-4ρcosθ=12, ∴曲線C的極坐標(biāo)方程為ρ2-4ρcosθ=12. (2)設(shè)A,B兩點(diǎn)的極坐標(biāo)方程分別為,,由消去θ得ρ2-2ρ-12=0,根據(jù)題意可得ρ1,ρ2是方程ρ2-2ρ-12=0的兩根,∴ρ1+ρ2=2,ρ1ρ2=-12, ∴|AB|=|ρ1-ρ2|==2. 角度2 用極坐標(biāo)解最值和取值范圍問題 2.(2018南平二模)在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的方程為+y2=1.曲線C2的參數(shù)方程為 (φ為參數(shù)),曲線C3的方程為y=xtanα,曲線C3與曲線C1,C2分別交于P,Q兩點(diǎn). (1)求曲線C1,C2的極坐標(biāo)方程; (2)求|OP|2|OQ|2的取值范圍. 解 (1)因?yàn)閤=ρcosθ,y=ρsinθ,所以曲線C1的極坐標(biāo)方程為+ρ2sin2θ=1,即ρ2=, 由(φ為參數(shù)),消去φ, 即得曲線C2的直角坐標(biāo)方程為x2+(y-1)2=1; 將x=ρcosθ,y=ρsinθ,代入化簡, 可得曲線C2的極坐標(biāo)方程為ρ=2sinθ. (2)曲線C3的極坐標(biāo)方程為θ=α, 由(1)得|OP|2=;|OQ|2=4sin2α, 即|OP|2|OQ|2==, 因?yàn)?<α<,所以0<sinα<1, 所以|OP|2|OQ|2∈(0,4). 極坐標(biāo)方程及其應(yīng)用的類型及解題策略 (1)求極坐標(biāo)方程.可在平面直角坐標(biāo)系中,求出曲線的方程,然后再轉(zhuǎn)化為極坐標(biāo)方程. (2)求點(diǎn)到直線的距離.先將極坐標(biāo)系下點(diǎn)的坐標(biāo)、直線方程轉(zhuǎn)化為平面直角坐標(biāo)系下點(diǎn)的坐標(biāo)、直線方程,然后利用直角坐標(biāo)系中點(diǎn)到直線的距離公式求解. (3)求線段的長度.先將極坐標(biāo)系下的點(diǎn)的坐標(biāo)、曲線方程轉(zhuǎn)化為平面直角坐標(biāo)系下的點(diǎn)的坐標(biāo)、曲線方程,然后再求線段的長度.                     1.(2018南寧模擬)已知曲線C1的參數(shù)方程為(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sin,直線l的直角坐標(biāo)方程為y=x. (1)求曲線C1和直線l的極坐標(biāo)方程; (2)已知直線l分別與曲線C1,曲線C2相交于異于極點(diǎn)的A,B兩點(diǎn),若A,B的極徑分別為ρ1,ρ2,求|ρ2-ρ1|的值. 解 (1)曲線C1的參數(shù)方程為(θ為參數(shù)),其普通方程為x2+(y-1)2=1, 極坐標(biāo)方程為ρ=2sinθ. 因?yàn)橹本€l的直角坐標(biāo)方程為y=x, 故直線l的極坐標(biāo)方程為θ=(ρ∈R). (2)曲線C1的極坐標(biāo)方程為ρ=2sinθ, 直線l的極坐標(biāo)方程為θ=, 將θ=代入C1的極坐標(biāo)方程得ρ1=1, 將θ=代入C2的極坐標(biāo)方程得ρ2=4, ∴|ρ2-ρ1|=3. 2.(2017全國卷Ⅱ)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4. (1)M為曲線C1上的動點(diǎn),點(diǎn)P在線段OM上,且滿足|OM||OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程; (2)設(shè)點(diǎn)A的極坐標(biāo)為,點(diǎn)B在曲線C2上,求△OAB面積的最大值. 解 (1)設(shè)點(diǎn)P的極坐標(biāo)為(ρ,θ)(ρ>0),點(diǎn)M的極坐標(biāo)為(ρ1,θ)(ρ1>0). 由題設(shè)知|OP|=ρ,|OM|=ρ1=. 由|OM||OP|=16得C2的極坐標(biāo)方程為 ρ=4cosθ(ρ>0). 因此C2的直角坐標(biāo)方程為(x-2)2+y2=4(x≠0). (2)設(shè)點(diǎn)B的極坐標(biāo)為(ρB,α)(ρB>0). 由題設(shè)知|OA|=2,ρB=4cosα,于是△OAB的面積 S=|OA|ρBsin∠AOB=4cosα =2≤2+. 當(dāng)α=-時(shí),S取得最大值2+. 所以△OAB面積的最大值為2+.

注意事項(xiàng)

本文(2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第12章 選修4系列 第1講 坐標(biāo)系講義 理(含解析).doc)為本站會員(xt****7)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!