高考數(shù)學(xué)復(fù)習(xí):第三章 :第三節(jié) 三角函數(shù)的圖象與性質(zhì)回扣主干知識提升學(xué)科素養(yǎng)

△+△2019年數(shù)學(xué)高考教學(xué)資料△+△第三節(jié) 三角函數(shù)的圖象與性質(zhì)【考綱下載】1.能畫出y=sin x,y=cos x,y=tan x的圖象,了解三角函數(shù)的周期性.2.借助圖象理解正弦函數(shù)、余弦函數(shù)在[0,2π],正切函數(shù)在上的性質(zhì).正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖象和性質(zhì)[來源:]函數(shù)[來源:]y=sin xy=cos xy=tan x圖象定義域RRk∈Z }[來源:]值域[-1,1][-1,1]R單調(diào)性遞增區(qū)間:(k∈Z);遞減區(qū)間:(k∈Z)[來源:]遞增區(qū)間:[2kπ-π,2kπ] (k∈Z);遞減區(qū)間:[2kπ,2kπ+π] (k∈Z)遞增區(qū)間:(k∈Z)最 值x=2kπ+(k∈Z)時,ymax=1;x=2kπ-(k∈Z)時,ymin=-1x=2kπ(k∈Z)時,ymax=1;x=2kπ+π(k∈Z) 時,ymin=-1無最值奇偶性奇函數(shù)偶函數(shù)奇函數(shù)對稱性對稱中心:(kπ,0)(k∈Z)對稱軸:x=kπ+,k∈Z對稱中心:(k∈Z)對稱軸:x=kπ,k∈Z對稱中心:(k∈Z)無對稱軸周期2π2ππ1.正切函數(shù)y=tan x在定義域內(nèi)是增函數(shù)嗎?提示:不是.正切函數(shù)y=tan x在每一個區(qū)間(k∈Z)上都是增函數(shù),但在定義域內(nèi)不是單調(diào)函數(shù),故不是增函數(shù).2.當(dāng)函數(shù)y=Asin(ωx+φ)分別為奇函數(shù)和偶函數(shù)時,φ的取值是什么?對于函數(shù)y=Acos(ωx+φ)呢?提示:函數(shù)y=Asin(ωx+φ),當(dāng)φ=kπ(k∈Z)時是奇函數(shù),當(dāng)φ=kπ+(k∈Z)時是偶函數(shù);函數(shù)y=Acos(ωx+φ),當(dāng)φ=kπ(k∈Z)時是偶函數(shù),當(dāng)φ=kπ+(k∈Z)時是奇函數(shù).1.函數(shù)y=tan 3x的定義域為( )A. B.C.D.解析:選D 由3x≠+kπ,得x≠+,k∈Z.2.設(shè)函數(shù)f(x)=sin,x∈R,則f(x)是( )A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)C.最小正周期為的奇函數(shù)D.最小正周期為的偶函數(shù)解析:選B ∵f(x)=sin=-cos 2x,∴f(x)是最小正周期為π的偶函數(shù).3.已知函數(shù)f(x)=sin(ω>0)的最小正周期為π,則該函數(shù)的圖象( )A.關(guān)于直線x=對稱 B.關(guān)于點對稱C.關(guān)于直線x=-對稱 D.關(guān)于點對稱解析:選B ∵f(x)=sin(ω>0)的最小正周期為π,∴ω=2,即f(x)=sin.經(jīng)驗證可知f=sin=sin π=0,即是函數(shù)f(x)的一個對稱點.4.下列函數(shù)中,周期為π,且在上為減函數(shù)的是( )A.y=sin B.y=cosC.y=sin D.y=cos解析:選A 由函數(shù)的周期為π,可排除C,D.又函數(shù)在上為減函數(shù),排除B,故選A.5.函數(shù)y=3-2cos的最大值為________,此時x=________.解析:函數(shù)y=3-2cos的最大值為3+2=5,此時x+=π+2kπ,即x=+2kπ(k∈Z).答案:5?。?kπ(k∈Z) 方法博覽(三)利用三角函數(shù)的性質(zhì)求參數(shù)的四種方法1.根據(jù)三角函數(shù)的奇偶性求參數(shù)[典例1] 已知f(x)=sin x+cos x(x∈R),函數(shù)y=f(x+φ)為偶函數(shù),則φ的值為________.[解題指導(dǎo)] 先求出f(x+φ)的解析式,然后求解.[解析] ∵f(x)=sin x+cos x=2sin,∴f(x+φ)=2sin.∵函數(shù)f(x+φ)為偶函數(shù),∴φ+=+kπ,k∈Z,即φ=+kπ(k∈Z).又∵|φ|≤,∴φ=.[答案] [點評] 求解三角函數(shù)奇偶性的參數(shù)問題常用下列結(jié)論進(jìn)行解答:函數(shù)y=Acos(ωx+φ)+B(A≠0)為奇函數(shù)?φ=kπ+(k∈Z)且B=0;為偶函數(shù)?φ=kπ(k∈Z).2.根據(jù)三角函數(shù)的單調(diào)性求參數(shù)[典例2] 已知函數(shù)f(x)=-2sin(2x+φ)(|φ|<π),若是f(x)的一個單調(diào)遞增區(qū)間,則φ的取值范圍為 ( )A. B.C. D.∪[解題指導(dǎo)] 求三角函數(shù)的單調(diào)區(qū)間,先求出已知函數(shù)的單調(diào)遞增區(qū)間,使為其子區(qū)間即可求得φ的范圍.[解析] 因為2kπ+≤2x+φ≤2kπ+,k∈Z,所以kπ+-≤x≤kπ+-,k∈Z,又因為是f(x)的一個單調(diào)遞增區(qū)間,|φ|<π,所以≤kπ+-,k∈Z,解得φ≤,同理由≥kπ+-,k∈Z,可得φ≥,所以≤φ≤.[答案] C[點評] 解答此類題要注意單調(diào)區(qū)間的給出方式,如:“函數(shù)f(x)在(k∈Z)上單調(diào)遞增”與“函數(shù)f(x)的單調(diào)遞增區(qū)間為(k∈Z)”,二者是不相同的.3.根據(jù)三角函數(shù)的周期性求參數(shù)[典例3] 函數(shù)f(x)=sin+sin ωx(ω>0)相鄰兩對稱軸之間的距離為2,則ω=________.[解題指導(dǎo)] 相鄰兩對稱軸之間的距離為2,即T=4.[解析] f(x)=sin+sin ωx=sin ωx+cos ωx+sin ωx=sin ωx+cos ωx=sin,又因為f(x)相鄰兩條對稱軸之間的距離為2,所以T=4,所以=4,即ω=.[答案] [點評] 函數(shù)f(x)=Asin(ωx+φ),f(x)=Acos(ωx+φ)圖象上一個最高點和它鄰近的最低點的橫坐標(biāo)之差的絕對值是函數(shù)的半周期,縱坐標(biāo)之差的絕對值是2A.在解決由三角函數(shù)圖象確定函數(shù)解析式的問題時,要注意使用好函數(shù)圖象顯示出來的函數(shù)性質(zhì)、函數(shù)圖象上特殊點的坐標(biāo)及兩個坐標(biāo)軸交點的坐標(biāo)等.4.根據(jù)三角函數(shù)的最值求參數(shù)[典例4] 若函數(shù)f(x)=asin x-bcos x在x=處有最小值-2,則常數(shù)a,b的值是( )A.a(chǎn)=-1,b= B.a(chǎn)=1,b=-C.a(chǎn)=,b=-1 D.a(chǎn)=-,b=1[解題指導(dǎo)] 函數(shù)f(x)=asin x-bcos x的最小值為-.[解析] f(x)=sin(x-φ)其中cos φ=,sin φ=,則解得[答案] D[點評] 解答本題的兩個關(guān)鍵:(1)引進(jìn)輔助角,將原式化為三角函數(shù)的基本形式;(2)利用正弦函數(shù)取最值的方法建立方程組.高考數(shù)學(xué)復(fù)習(xí)精品高考數(shù)學(xué)復(fù)習(xí)精品。