新編高中數(shù)學北師大版選修22教案:第2章 計算導數(shù) 第一課時參考教案
-
資源ID:42626828
資源大?。?span id="g0iw0op" class="font-tahoma">152KB
全文頁數(shù):4頁
- 資源格式: DOC
下載積分:10積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
新編高中數(shù)學北師大版選修22教案:第2章 計算導數(shù) 第一課時參考教案
新編數(shù)學北師大版精品資料
3 計算導數(shù)
第一課時 計算導數(shù)(一)
一、教學目標:
1、能根據(jù)導數(shù)的定義求簡單函數(shù)的導數(shù),掌握計算一般函數(shù)在處的導數(shù)的步驟;
2、理解導函數(shù)的概念,并能用它們求簡單函數(shù)的導數(shù)。
二、教學重點:根據(jù)導數(shù)的定義計算一般函數(shù)在處的導數(shù);
教學難點:導數(shù)的定義運用
三、教學方法:探析歸納,講練結(jié)合
四、教學過程
(一)復習導入新課
注 意
那么,如何利用導數(shù)的定義求函數(shù)的導數(shù)?從而導入新課。
(二)、探析新課
計算函數(shù)在處的導數(shù)的步驟如下:
(1)通過自變量在處的Δx,確定函數(shù)在處的改變量:;
(2)確定函數(shù)在處的平均變化率:;
(3)當Δx趨于0時,得到導數(shù)。
例1、求函數(shù)在下列各點的導數(shù)
(1); (2); (3)。
解:(1)∵.
∴。
∴當Δx趨于0時,得到導數(shù)。
(2)由(1)可知當時有:。
(3)由(1)可知當時有:。
一般地:如果一個函數(shù)在區(qū)間[a,b]上的每一點x處都有導數(shù),導數(shù)值記為:
則是關于x的函數(shù),稱為的導函數(shù),通常也簡稱為導數(shù)。
例2、求的導函數(shù),并利用導函數(shù)求,,。
解:∵.
∴。
∴當Δx趨于0時,得到導函數(shù)。
分別將,,代入,可得
,,。
(二)、小結(jié):我們知道,導數(shù)的幾何意義是曲線在某一點處的切線斜率,物理意義是運動物體在某一時刻的瞬時速度.那么,對于函數(shù),如何求它的導數(shù)呢?
由導數(shù)定義本身,給出了求導數(shù)的最基本的方法,利用導數(shù)的定義計算函數(shù)在處的導數(shù)的步驟如下:
(1)通過自變量在處的Δx,確定函數(shù)在處的改變量:;
(2)確定函數(shù)在處的平均變化率:;
(3)當Δx趨于0時,得到導數(shù)
(三)、練習:課本練習:1、2.
(四)、作業(yè):課本習題2-3:A組1、2、4
(五)、課外練習:求函數(shù)的導數(shù)
因為
所以
五、教后反思: