歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2020高中數(shù)學(xué)北師大版選修22教案:第1章 復(fù)習(xí)點撥:類比推理的命題

  • 資源ID:44686369       資源大?。?span id="ynnzl0q" class="font-tahoma">233KB        全文頁數(shù):3頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

2020高中數(shù)學(xué)北師大版選修22教案:第1章 復(fù)習(xí)點撥:類比推理的命題

北師大版2019-2020學(xué)年數(shù)學(xué)精品資料 談類比推理的命題 類比推理是由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理;類比推理由特殊到特殊的推理,借助類比推理可以推測未知、可以發(fā)現(xiàn)新結(jié)論、可以探索和提供解決問題的思路和方法;因此,類比推理是一種很重要的推理,它在近年各級各類的考試中,也時有出現(xiàn);本文簡介類比推理的命題特點,揭示求解規(guī)律,希望對你求解此類問題能有所幫助。 1、類比概念 類比某些熟悉的概念,產(chǎn)生的類比推理型試題;在求解時可以借助原概念所涉及的基本方法與基本思路。 例1、等和數(shù)列的定義是:若數(shù)列從第二項起,以后每一項與前一項的和都是同一常數(shù),則此數(shù)列叫做等和數(shù)列,這個常數(shù)叫做等和數(shù)列的公和;如果數(shù)列是等和數(shù)列,且,,寫出數(shù)列的一個通項公式為; 分析:由定義知公和為,且, 那么,于是, 因為,得 2、類比定理 從初中到高中我們學(xué)過的定理很多,這些定理是產(chǎn)生類比型問題的“沃土”。請看: 例2、在平面幾何里有勾股定理:“設(shè)的兩邊互相垂直,則。”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積之間的關(guān)系,可以得出的正確結(jié)論是:“設(shè)三棱錐的三側(cè)面兩兩垂直,則 ?!? 分析:在平面上是線的關(guān)系,在空間呢?假若是面的關(guān)系,類比一下:直角頂點所對的邊的平方是另外兩邊的平方和,而直角頂點所對的面會 有什么關(guān)系呢?大膽一點猜測: 事實上,如圖作連,則 3、類比性質(zhì) 從一個特殊式子的性質(zhì)、一個特殊圖形的性質(zhì)入手,產(chǎn)生的類比推理型問題;求解時要認真分析兩者之間的聯(lián)系與區(qū)別,深入思考兩者的轉(zhuǎn)化過程是求解的關(guān)鍵。 例3、我們知道:圓的任意一弦(非直徑)的中點和圓心連線與該弦垂直;那么,若橢圓的一弦中點與原點連線及弦所在直線的斜率均存在,你能得到什么結(jié)論?請予以證明。 分析:假若弦的斜率與弦的中點和圓心連線的斜率都存在,由于兩線垂直,我們知道斜率之積為;對于方程,若,則方程即為圓的方程,由此可以猜測兩斜率之積為或; 于是,設(shè)弦的兩端點的坐標分別為,中點為,則 即兩斜率之積為 4、類比方法 有一些處理問題的方法,具有類比性,結(jié)合這些方法產(chǎn)生的問題,在求解時,要注意知識的遷移。 例4、若點是正四面體的面上一點,且到另三個面的距離分別為,正四面體的高為,則( ) (A) (B) (C) (D)與的關(guān)系不定 分析:由點是正三角形的邊上一點,且到另兩邊的距離分別為,正三角形的高為,由面積相等很快可以得到;于是,類比方法,平面上用面積,空間中用體積,立即可得答案為(B) 5、類比陷阱 類比推理是一種很好、很重要的推理,為使這種推理更嚴謹、更完美,有時也會故意設(shè)計一些讓你“誤入歧途”的類比推理型陷阱題。 例5、平幾中有“一個角的兩邊分別垂直于另一個角的兩邊則兩角相等或互補”;在立幾“當一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面時”,兩二面角( ) (A)互補 (B)相等 (C)互補或相等 (D)此兩二面角的關(guān)系不定 分析:平幾中的這個結(jié)論有很大的誤導(dǎo)性,建立在這個結(jié)論的基礎(chǔ)上,很多同學(xué)也許會不知不覺“上當”誤選答案(C); 其實,正確答案為(D),作一個圖形就可以發(fā)現(xiàn)結(jié)論。 借助類比推理進行命題是命題改革產(chǎn)生的一類新型試題,從前面的例題可以看出,命題的方式很多,可設(shè)計的命題點也很多。面對這些試題我們要搞清楚是知識型類比還是方法型類比,不同的類型將有不同的分析與求解思路。

注意事項

本文(2020高中數(shù)學(xué)北師大版選修22教案:第1章 復(fù)習(xí)點撥:類比推理的命題)為本站會員(仙***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!